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We measure cosmological parameters using the three-dimensional power spectrum P (k) from
over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with WMAP and
other data. Our results are consistent with a “vanilla” flat adiabatic ΛCDM model without tilt
(ns = 1), running tilt, tensor modes or massive neutrinos. Adding SDSS information more than
halves the WMAP-only error bars on some parameters, tightening 1σ constraints on the Hubble
parameter from h ≈ 0.74+0.18

−0.07 to h ≈ 0.70+0.04
−0.03 , on the matter density from Ωm ≈ 0.25 ± 0.10 to

Ωm ≈ 0.30 ± 0.04 (1σ) and on neutrino masses from < 11 eV to < 0.6 eV (95%). SDSS helps even
more when dropping prior assumptions about curvature, neutrinos, tensor modes and the equation
of state. Our results are in substantial agreement with the joint analysis of WMAP and the 2dF
Galaxy Redshift Survey, which is an impressive consistency check with independent redshift survey
data and analysis techniques. In this paper, we place particular emphasis on clarifying the physical
origin of the constraints, i.e., what we do and do not know when using different data sets and prior
assumptions. For instance, dropping the assumption that space is perfectly flat, the WMAP-only
constraint on the measured age of the Universe tightens from t0 ≈ 16.3+2.3

−1.8 Gyr to t0 ≈ 14.1+1.0
−0.9

Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation
of state in the list of free parameters, many constraints are still quite weak, but future cosmological
measurements from SDSS and other sources should allow these to be substantially tightened.

I. INTRODUCTION

The spectacular recent cosmic microwave background
(CMB) measurements from the Wilkinson Microwave
Anisotropy Probe (WMAP) [1–7] and other experiments
have opened a new chapter in cosmology. However, as

emphasized, e.g., in [6] and [8], measurements of CMB
fluctuations by themselves do not constrain all cosmologi-
cal parameters due to a variety of degeneracies in parame-
ter space. These degeneracies can be removed, or at least
mitigated, by applying a variety of priors or constraints
on parameters, and combining the CMB data with other



2

cosmological measures, such as the galaxy power spec-
trum. The WMAP analysis in particular made use of
the power spectrum measured from the Two Degree Field
Galaxy Redshift Survey (2dFGRS) [9–11].

The approach of the WMAP team [6, 7], was to ap-
ply Ockham’s razor, and ask what minimal model (i.e.,
with the smallest number of free parameters) is consis-
tent with the data. In doing so, they used reasonable
assumptions about theoretical priors and external data
sets, which allowed them to obtain quite small error bars
on cosmological parameters. The opposite approach is
to treat all basic cosmological parameters as free param-
eters and constrain them with data using minimal as-
sumptions. The latter was done both in WMAP accu-
racy forecasts based on information theory [12–16] and in
many pre-WMAP analyses involving up to 11 cosmolog-
ical parameters. This work showed that because of phys-
ically well-understood parameter degeneracies, accurate
constraints on most parameters could only be obtained
by combining CMB measurements with something else.
Bridle, Lahav, Ostriker and Steinhardt [8] argue that in
some cases (notably involving the matter density Ωm),
you get quite different answers depending on your choice
of “something else”, implying that the small formal error
bars must be taken with a grain of salt. For instance,
the WMAP team [6] quote Ωm = 0.27 ± 0.04 from com-
bining WMAP with galaxy clustering from the 2dFGRS
and assumptions about spatial flatness, negligible tensor
modes and a reionization prior, whereas Bridle et al. [8]
argue that combining WMAP with certain galaxy clus-
ter measurements prefers Ωm ∼ 0.17. In other words,
WMAP has placed the ball in the non-CMB court. Since
non-CMB measurements are now less reliable and precise
than the CMB, they have emerged as the limiting factor
and weakest link in the quest for precision cosmology.
Much of the near-term progress in cosmology will there-
fore be driven by reductions in statistical and systematic
uncertainties of non-CMB probes.

The Sloan Digital Sky Survey [17–19] (SDSS) team has
recently measured the three-dimensional power spectrum
P (k) using over 200,000 galaxies. The goal of that mea-
surement [20] was to produce the most reliable non-CMB
data to date, in terms of small and well-controlled sys-
tematic errors, and the purpose of the present paper is to
use this measurement to constrain cosmological parame-
ters. The SDSS power spectrum analysis is completely in-
dependent of that of the 2dFGRS, and with greater com-
pleteness, more uniform photometric calibration, analyt-
ically computed window functions and improved treat-
ment of non-linear redshift distortions, it should be less
sensitive to potential systematic errors. We emphasize
the specific ways in which large-scale structure data re-
moves degeneracies in the WMAP-only analysis, and ex-
plore in detail the effect of various priors that are put on
the data. The WMAP analysis using the 2dFGRS data
[6, 7] was carried out with various strong priors:

1. reionization optical depth τ < 0.3,

2. vanishing tensor fluctuations and spatial curvature
when constraining other parameters,

3. that galaxy bias was known from the 2dFGRS bis-
pectrum [21], and

4. that galaxy redshift distortions were reliably mod-
eled.

We will explore the effect of dropping these assumptions,
and will see that the first three make a dramatic differ-
ence. Note in particular that both the spectral index ns

and the tensor amplitude r are motivated as free parame-
ters only by inflation theory, not by current observational
data (which are consistent with ns = 1, r = 0), suggest-
ing that one should either include or exclude them both.

The basic observational and theoretical situation is
summarized in Figure 1. Here we have used our Monte
Carlo Markov Chains (MCMC, described in detail below)
to show how uncertainty in cosmological parameters (Ta-
ble 1) translates into uncertainty in the CMB and mat-
ter power spectra. We see that the key reason why SDSS
helps so much is that WMAP alone places only very weak
constraints on the matter power spectrum P (k). As sim-
plifying theoretical assumptions are added, the WMAP
P (k) predictions are seen to tighten into a narrow band
whose agreement with the SDSS measurements is a strik-
ing manifestation of cosmological consistency. Yet even
this band is still much wider than the SDSS error bars,
which is why SDSS helps tighten constraints (notably on
ΩΛ and h) even for this restricted 6-parameter class of
models.

The rest of this paper is organized as follows. After
presenting our basic results in three tables, we devote a
series of sections to digesting this information one piece
at a time, focusing on what we have and have not learned
about the underlying physics, and on how robust the var-
ious conclusions are to the choice of data sets and prior
assumptions. In Section VIII we discuss our conclusions
and potential systematic uncertainties, assess the extent
to which a robust and consistent cosmological picture
emerges, and comment on upcoming prospects and chal-
lenges.
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FIG. 1: Summary of observations and cosmological models. Data points are for unpolarized CMB experiments combined (top; Appendix
A.3 details data used) cross-polarized CMB from WMAP (middle) and Galaxy power from SDSS (bottom). Shaded bands show the 1-
sigma range of theoretical models from the Monte-Carlo Markov chains, both for cosmological parameters (right) and for the corresponding
power spectra (left). From outside in, these bands correspond to WMAP with no priors, adding the prior fν = 0, w = −1, further adding
the priors Ωk = r = α = 0, and further adding the SDSS information, respectively. These four bands essentially coincide in the top two
panels, since the CMB constraints were included in the fits. Note that the ℓ-axis in the upper two panels goes from logarithmic on the left
to linear on the right, to show important features at both ends, whereas the k-axis of the bottom panel is simply logarithmic.
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II. BASIC RESULTS

A. Cosmological parameters

In this paper, we work within the context of a hot
Big Bang cosmology with primordial fluctuations that
are adiabatic (i.e., we do not allow isocurvature modes)
and Gaussian, with negligible generation of fluctuations
by cosmic strings, textures, or domain walls. Within this
framework, we follow [6, 22] in parameterizing our cos-
mological model in terms of 13 parameters:

p ≡ (τ, ωb, ωd, fν , ΩΛ, w, Ωk, As, ns, α, r, nt, b). (1)

The meaning of these 13 parameters is described in Ta-
ble 1, together with an additional 16 derived parameters,
and their relationship to the original 13.

All parameters are defined just as in version 4.3 of
CMBfast [23]: in particular, the pivot point unchanged
by ns, α and nt is at 0.05/Mpc, and the tensor normal-
ization convention is such that r = −8nt for slow-roll
models. σ8, the linear rms mass fluctuation in spheres of
radius 8h−1Mpc, is determined by the power spectrum,
which is in turn determined by p via CMBfast. The
last six parameters in the table are so-called normal pa-
rameters [24], which correspond to observable features in
the CMB power spectrum [25, 26] and are useful for hav-
ing simpler statistical properties than the underlying cos-
mological parameters as discussed in Appendix A. Since
current nt-constraints are too weak to be interesting, we
make the slow-roll assumption nt = −r/8 throughout
this paper rather than treat nt as a free parameter.

B. Constraints

We constrain theoretical models using the Monte Carlo
Markov Chain method [27–33] implemented as described
in Appendix A. Unless otherwise stated, we use the
WMAP temperature and cross-polarization power spec-
tra [1–4], evaluating likelihoods with the software pro-
vided by the WMAP team [7]. When using SDSS in-
formation, we fit the nonlinear theoretical power spec-
trum P (k) approximation of [34] to the observations re-
ported by the SDSS team [20], assuming an unknown
scale-independent linear bias b to be marginalized over.
This means that we use only the shape of the measured
SDSS power spectrum, not its amplitude. We use only
the measurements with k ≤ 0.2h/Mpc as suggested by
[20]. The WMAP team used this same k-limit when an-
alyzing the 2dFGRS [7]; we show in Section VIII C that
cutting back to k ≤ 0.15h/Mpc causes a negligible change
in our best-fit model. To be conservative, we do not
use the SDSS measurement of redshift space distortion
parameter β [20], nor do we use any other information
(“priors”) whatsoever unless explicitly stated. When us-
ing SN Ia information, we employ the 172 SN Ia redshifts
and corrected magnitudes compiled and uniformly ana-
lyzed by Tonry et al. [35], evaluating the likelihood with

the software provided by their team, which marginalizes
over the corrected SN Ia “standard candle” absolute mag-
nitude. Note that this is an updated and expanded data
set from that available to the WMAP team when they
carried out their analysis[6].

Our constraints on individual cosmological parameters
are given in Tables 2-4 and illustrated in Figure 2, both
for WMAP alone and when including additional informa-
tion such as that from the SDSS. To avoid losing sight
of the forest for all the threes (and other digits), we will
spend most of the remainder of this paper digesting this
voluminous information one step at a time, focusing on
what WMAP and SDSS do and don’t tell us about the
underlying physics. The one-dimensional constraints in
the tables and Figure 2 fail to reveal important informa-
tion hidden in parameter correlations and degeneracies,
so a powerful tool will be studying the joint constraints
on key 2-parameter pairs. We will begin with a simple
6-parameter space of models, then gradually introduce
additional parameters to quantify both how accurately
we can measure them and to what extent they weaken
the constraints on the other parameters.

III. VANILLA ΛCDM MODELS

In this section, we explore constraints on six-parameter
“vanilla” models that have no spatial curvature (Ωk = 0),
no gravity waves (r = 0), no running tilt (α = 0), neg-
ligible neutrino masses (fν = 0) and dark energy cor-
responding to a pure cosmological constant (w = −1).
These vanilla ΛCDM models are thus determined by
merely six parameters: the matter budget (ΩΛ, ωd, ωb),
the initial conditions (As, ns) and the reionization optical
depth τ . (When including SDSS information, we bring
in the bias parameter b as well.)

Our constraints on individual cosmological parameters
are shown in Tables 2-4 and Figure 2 both for WMAP
alone and when including SDSS information. Several fea-
tures are noteworthy.

First of all, as emphasized by the WMAP team [6], er-
ror bars have shrunk dramatically compared to the situ-
ation before WMAP, and it is therefore quite impressive
that any vanilla model is still able to fit both the un-
polarized and polarized CMB data. The best fit model
(Table 2) has χ2 ∼ 1431.5 for 899 + 449 − 6 = 1342 ef-
fective degrees of freedom, i.e., about 1.7σ high if taken
at face value. The WMAP team provide an extensive
discussion of possible origins of this slight excess, and ar-
gue that it comes mainly from three unexplained “blips”
[7, 36], deviations from the model fit over a narrow range
of ℓ, in the measured temperature power spectrum. They
argue that these blips have nothing to do with features
in any standard cosmological models, since adding the
above-mentioned non-vanilla parameters does not reduce
χ2 substantially — we confirm this below, and will not
dwell further on these sharp features. Adding the 19
SDSS data points increases the effective degrees of free-
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Table 1: Cosmological parameters used. Parameters 14-28 are determined by the first 13. Our Monte-Carlo Markov Chain assigns a
uniform prior to the parameters labeled “MCMC”. The last six and those labeled “Fits” are closely related to observable power spectrum

features [24–26] and are helpful for understanding the physical origin of the constraints.

Parameter Meaning Status Use Definition

τ Reionization optical depth Not optional

ωb Baryon density Not optional MCMC ωb = Ωbh
2 = ρb/(1.88 × 10−26kg/m3)

ωd Dark matter density Not optional MCMC ωd = Ωdh2 = ρd/(1.88 × 10−26kg/m3)

fν Dark matter neutrino fraction Well motivated MCMC fν = ρν/ρd

ΩΛ Dark energy density Not optional MCMC

w Dark energy equation of state Worth testing MCMC pΛ/ρΛ (approximated as constant)

Ωk Spatial curvature Worth testing

As Scalar fluctuation amplitude Not optional Primordial scalar power at k = 0.05/Mpc

ns Scalar spectral index Well motivated MCMC Primordial spectral index at k = 0.05/Mpc

α Running of spectral index Worth testing MCMC α = d lnns/d lnk (approximated as constant)

r Tensor-to-scalar ratio Well motivated MCMC Tensor-to-scalar power ratio at k = 0.05/Mpc

nt Tensor spectral index Well motivated MCMC

b Galaxy bias factor Not optional MCMC b = [Pgalaxy(k)/P (k)]1/2 (assumed constant for k < 0.2h/Mpc)

zion Reionization redshift (abrupt) zion ≈ 92(0.03hτ/ωb)
2/3Ω

1/3
m (assuming abrupt reionization; [37])

ωm Physical matter density Fits ωm = ωb + ωd = Ωmh2

Ωm Matter density/critical density Ωm = 1 − ΩΛ − Ωk

Ωtot Total density/critical density Ωtot = Ωm + ΩΛ = 1 − Ωk

At Tensor fluctuation amplitude At = rAs

Mν Sum of neutrino masses Mν ≈ (94.4 eV) × ωdfν [38]

h Hubble parameter h =
√

(ωd + ωb)/(1 − Ωk − ΩΛ)

β Redshift distortion parameter β ≈ [Ω
4/7
m + (1 + Ωm/2)(ΩΛ/70)]/b [39, 40]

t0 Age of Universe t0 ≈(9.785 Gyr)×h−1
∫ 1
0

[(ΩΛa−(1+3w) + Ωk + Ωm/a)]−1/2da [38]

σ8 Galaxy fluctuation amplitude σ8 = {4π
∫

∞

0 [ 3
x3

(sin x − x cos x)]2P (k) k2dk
(2π)3

}1/2, x ≡ k × 8h−1Mpc

Z CMB peak suppression factor MCMC Z = e−2τ

Ap Amplitude on CMB peak scales MCMC Ap = Ase−2τ

Θs Acoustic peak scale (degrees) MCMC Θs(Ωk,ΩΛ, w, ωd, ωb) given by [25]

H2 2nd to 1st CMB peak ratio Fits H2 = (0.925ω0.18
m 2.4ns−1)/[1 + (ωb/0.0164)12ω0.52

m )]0.2 [25]

H3 3rd to 1st CMB peak ratio Fits H3 = 2.17[1 + (ωb/0.044)2]−1ω0.59
m 3.6ns−1/[1 + 1.63(1 − ωb/0.071)ωm ]

A∗ Amplitude at pivot point Fits A∗ = 0.82ns−1Ap

dom by 19 − 1 = 18 (since this requires the addition of
the bias parameter b), yet raises the best-fit χ2 by only
15.7. Indeed, Figure 1 shows that even the model best
fitting WMAP alone does a fine job at fitting the SDSS
data with no further parameter tuning.

A. The vanilla banana

Second, our WMAP-only constraints are noticeably
weaker than those reported by [6], mostly because we
did not place a prior on the value of the reionization op-
tical depth τ , and adding SDSS information helps rather
dramatically with all of our six basic parameters, roughly
halving the 2σ error bars. The physical explanation for
both of these facts is that the allowed subset of our 6-
dimensional parameter space forms a rather elongated
banana-shaped region. In the 2-dimensional projections
shown (Figures 3, 4, 5 and 6), this is most clearly seen
in Figures 3 and 5. Moving along this degeneracy ba-
nana, all six parameters (τ, ΩΛ, ωd, ωb, As, ns) increase

together, as does h.

There is nothing physically profound about this one-
dimensional degeneracy. Rather, it is present because
we are fitting six parameters to only five basic observ-
ables: the heights of the first three acoustic peaks, the
large-scale normalization and the angular peak location.
Within the vanilla model space, all models fitting these
five observables will do a decent job at fitting the power
spectra everywhere that WMAP is sensitive [25]. As
measurements improve and include additional peaks, this
approximate degeneracy will go away.

Here is how the banana degeneracy works in practice:
increasing τ and As in such a way that Ap ≡ Ase

−2τ

stays constant, the peak heights remain unchanged and
the only effect is to increase power on the largest scales.
The large-scale power relative to the first peak can be
brought back down to the observed value by increasing
ns, after which the second peak can be brought back
down by increasing ωb. Adding WMAP polarization in-
formation actually lengthens rather than shortens the
degeneracy banana, by stretching out the range of pre-



6

FIG. 2: Constraints on individual cosmological quantities using WMAP alone (shaded yellow/light grey distributions) and including SDSS
information (narrower red/dark grey distributions). Each distribution shown has been marginalized over all other quantities in the class
of 6-parameter (τ, ΩΛ, ωd, ωb, As, ns) “vanilla” models as well as over a galaxy bias parameter b for the SDSS case. The α-distributions
are also marginalized over r and Ωk. The parameter measurements and error bars quoted in the tables correspond to the median and the
central 68% of the distributions, indicated by three vertical lines for the WMAP+SDSS case above. When the distribution peaks near

zero (like for r), we instead quote an upper limit at the 95th percentile (single vertical line). The horizontal dashed lines indicate e−x2/2

for x = 1 and 2, respectively, so if the distribution were Gaussian, its intersections with these lines would correspond to 1σ and 2σ limits,
respectively.

ferred τ -values — the largest-scale polarization measure-
ment prefers very high τ (Figure 1) while the unpolarized
measurements prefer τ = 0. This banana degeneracy was
also discussed in numerous accuracy forecasting papers

and older parameter constraint papers [12, 13, 15, 16].

Since the degeneracy involves all the parameters, es-
sentially any extra piece of information will break it.
The WMAP team break it by imposing a prior (assuming
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Table 2: 1σ constraints on cosmological parameters using WMAP information alone. The columns compare different theoretical priors
indicated by numbers in italics. The penultimate column has only the six “vanilla” parameters (τ, ΩΛ, ωd, ωb, As, ns) free and therefore

gives the smallest error bars. The last column uses WMAP temperature data alone, all others also include WMAP polarization
information.

Using WMAP temperature and polarization information No pol.

6par+Ωk + r + α 6par+Ωk 6par+r 6par+fν 6par+w 6par 6par

e−2τ 0.52+0.21
−0.15 0.65+0.19

−0.32 0.68+0.13
−0.16 0.75+0.12

−0.23 0.68+0.15
−0.21 0.66+0.17

−0.25 > 0.50 (95%)

Θs 0.602+0.010
−0.006 0.603+0.015

−0.005 0.5968+0.0048
−0.0056 0.5893+0.0062

−0.0056 0.5966+0.0066
−0.0105 0.5987+0.0052

−0.0048 0.5984+0.0041
−0.0042

ΩΛ 0.54+0.24
−0.33 0.53+0.24

−0.32 0.823+0.058
−0.082 0.687+0.087

−0.097 0.64+0.14
−0.17 0.75+0.10

−0.10 0.674+0.086
−0.093

h2Ωd 0.105+0.023
−0.023 0.108+0.022

−0.034 0.097+0.021
−0.018 0.119+0.018

−0.016 0.118+0.020
−0.020 0.115+0.020

−0.021 0.129+0.019
−0.018

h2Ωb 0.0238+0.0035
−0.0027 0.0241+0.0055

−0.0020 0.0256+0.0025
−0.0019 0.0247+0.0029

−0.0016 0.0246+0.0038
−0.0017 0.0245+0.0050

−0.0019 0.0237+0.0018
−0.0013

fν 0 0 0 No constraint 0 0 0

ns 0.97+0.13
−0.10 1.01+0.18

−0.06 1.064+0.066
−0.059 0.962+0.098

−0.041 1.03+0.12
−0.05 1.02+0.16

−0.06 0.989+0.061
−0.031

nt + 1 0.9847+0.0097
−0.0141 1 0.959+0.026

−0.037 1 1 1 1

Ap 0.593+0.053
−0.044 0.602+0.053

−0.051 0.592+0.049
−0.046 0.602+0.045

−0.050 0.637+0.045
−0.046 0.633+0.044

−0.041 0.652+0.049
−0.046

r < 0.90 (95%) 0 < 0.84 (95%) 0 0 0 0

b No constraint No constraint No constraint No constraint No constraint No constraint No constraint

w −1 −1 −1 −1 −0.72+0.34
−0.27 −1 −1

α −0.075+0.047
−0.055 0 0 0 0 0 0

Ωtot 1.095+0.094
−0.144 1.086+0.057

−0.128 0 0 0 0 0

Ωm 0.57+0.45
−0.33 0.55+0.47

−0.29 0.177+0.082
−0.058 0.313+0.097

−0.087 0.36+0.17
−0.14 0.25+0.10

−0.10 0.326+0.093
−0.086

h2Ωm 0.128+0.022
−0.021 0.132+0.021

−0.028 0.123+0.020
−0.018 0.144+0.018

−0.016 0.143+0.020
−0.019 0.140+0.020

−0.018 0.153+0.020
−0.018

h 0.48+0.27
−0.12 0.50+0.16

−0.13 0.84+0.12
−0.10 0.674+0.087

−0.049 0.63+0.14
−0.10 0.74+0.18

−0.07 0.684+0.070
−0.045

τ 0.33+0.17
−0.17 0.22+0.34

−0.13 0.19+0.13
−0.09 0.15+0.18

−0.07 0.19+0.18
−0.10 0.21+0.24

−0.11 < 0.35 (95%)

zion 25.9+4.4
−8.8 20.1+9.2

−8.3 17.1+5.8
−5.8 15.5+8.6

−5.6 18.5+7.1
−6.6 19.6+7.8

−7.4 < 25 (95%)

As 1.14+0.42
−0.31 0.97+0.73

−0.23 0.87+0.28
−0.16 0.81+0.35

−0.13 0.94+0.40
−0.18 0.98+0.56

−0.21 0.80+0.26
−0.12

At 0.14+0.13
−0.10 0 0.30+0.22

−0.17 0 0 0 0

β No constraint No constraint No constraint No constraint No constraint No constraint No constraint

t0[Gyr] 16.5+2.6
−3.1 16.3+2.3

−1.8 13.00+0.41
−0.47 13.75+0.36

−0.59 13.53+0.52
−0.65 13.24+0.41

−0.89 13.41+0.29
−0.37

σ8 0.90+0.13
−0.13 0.87+0.15

−0.13 0.84+0.17
−0.17 0.32+0.36

−0.32 0.95+0.16
−0.14 0.99+0.19

−0.14 0.94+0.15
−0.12

H2 0.441+0.013
−0.014 0.4581+0.0090

−0.0083 0.4541+0.0067
−0.0081 0.426+0.018

−0.010 0.4541+0.0084
−0.0085 0.4543+0.0083

−0.0085 0.4541+0.0085
−0.0086

H3 0.424+0.043
−0.040 0.455+0.033

−0.029 0.452+0.034
−0.033 0.441+0.039

−0.033 0.477+0.036
−0.034 0.474+0.037

−0.033 0.475+0.032
−0.030

A∗ 0.595+0.056
−0.048 0.599+0.055

−0.064 0.584+0.050
−0.046 0.602+0.045

−0.046 0.631+0.047
−0.045 0.624+0.048

−0.042 0.652+0.048
−0.046

Mν [eV] 0 0 0 < 10.6 (95%) 0 0 0

χ2/dof 1426.1/1339 1428.4/1341 1430.9/1341 1431.8/1341 1431.8/1341 1431.5/1342 972.4/893

τ < 0.3), which cuts off much of the banana. Indeed, Fig-
ure 2 shows that the distribution for several parameters
(notably the reionization redshift zion) are bimodal, so
this prior eliminates the rightmost of the two bumps. In
the present paper, we wish to keep assumptions to a min-
imum and therefore break the degeneracy using the SDSS
measurements instead. Figure 5 illustrates the physical
reason that this works so well: SDSS accurately measures
the P (k) “shape parameter” Γ ≡ hΩm = 0.21 ± 0.03 at
2σ [20], which crudely speaking determines the horizontal
position of P (k) and this allowed region in the (Ωm, h)-
plane intersects the CMB banana at an angle. Once E-
polarization results from WMAP become available, they
should provide another powerful way of breaking this de-
generacy from WMAP alone, by directly constraining τ
— from our WMAP+SDSS analysis, we make the predic-
tion τ < 0.29 at 95% confidence for what this measure-
ment should find. (Unless otherwise specified, we quote
1σ limits in text and tables, whereas the 2-dimensional
figures show 2σ limits.)

Figure 5 shows that the banana is well fit by h =
0.7(Ωm/0.3)−0.35, so even from WMAP+SDSS alone, we
obtain the useful precision constraint h(Ωm/0.3)0.35 =
0.697+0.012

−0.011 (68%).

B. Consistency with other measurements

Figure 3 shows that the WMAP+SDSS allowed value
of the baryon density ωb = 0.023±0.001 agrees well with
the latest measurements ωb = 0.022 ± 0.002 from Big
Bang Nucleosynthesis [41–43]. It is noteworthy that the
WMAP+SDSS preferred value is higher than the BBN
preferred value ωb = 0.019±0.001 of a few years ago [44],
so the excellent agreement hinges on improved reaction
rates in the theoretical BBN predictions [42] and a slight
decrease in observed deuterium abundance. This is not to
be confused with the more dramatic drop in inferred deu-
terium abundance in preceding years as data improved,
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Table 3: 1σ constraints on cosmological parameters combining CMB and SDSS information. The columns compare different theoretical
priors indicated by italics. The second last column drops the polarized WMAP information and the last column drops all WMAP

information, replacing it by pre-WMAP CMB experiments. The 6par+w column includes SN Ia information.

Using SDSS + WMAP temperature and polarization information No pol. No WMAP

6par+Ωk + r + α 6par+Ωk 6par+r 6par+fν 6par+w 6par 6par 6par

e−2τ 0.53+0.22
−0.17 0.69+0.15

−0.32 0.776+0.098
−0.116 0.776+0.095

−0.121 0.80+0.10
−0.13 0.780+0.094

−0.119 > 0.63 (95%) > 0.71 (95%)

Θs 0.601+0.010
−0.006 0.600+0.013

−0.004 0.5982+0.0034
−0.0032 0.5948+0.0033

−0.0030 0.5954+0.0037
−0.0038 0.5965+0.0031

−0.0030 0.5968+0.0030
−0.0030 0.5977+0.0048

−0.0045

ΩΛ 0.660+0.080
−0.097 0.653+0.082

−0.084 0.727+0.041
−0.042 0.620+0.074

−0.087 0.706+0.032
−0.033 0.699+0.042

−0.045 0.684+0.041
−0.046 0.691+0.039

−0.053

h2Ωd 0.103+0.020
−0.022 0.103+0.016

−0.024 0.1195+0.0084
−0.0082 0.135+0.014

−0.012 0.124+0.012
−0.011 0.1222+0.0090

−0.0082 0.1254+0.0093
−0.0083 0.1252+0.0088

−0.0076

h2Ωb 0.0238+0.0036
−0.0026 0.0232+0.0051

−0.0017 0.0242+0.0017
−0.0013 0.0234+0.0014

−0.0011 0.0232+0.0013
−0.0010 0.0232+0.0013

−0.0010 0.0231+0.0011
−0.0009 0.0229+0.0016

−0.0015

fν 0 0 0 < 0.12 (95%) 0 0 0 0

ns 0.97+0.12
−0.10 0.98+0.18

−0.04 1.012+0.049
−0.036 0.972+0.041

−0.027 0.976+0.040
−0.024 0.977+0.039

−0.025 0.973+0.030
−0.021 1.015+0.036

−0.033

nt + 1 0.9852+0.0093
−0.0154 1 0.976+0.016

−0.021 1 1 1 1 1

Ap 0.584+0.045
−0.033 0.584+0.038

−0.028 0.635+0.023
−0.021 0.645+0.029

−0.026 0.637+0.027
−0.027 0.633+0.024

−0.022 0.637+0.025
−0.023 0.588+0.025

−0.025

r < 0.50 (95%) 0 < 0.47 (95%) 0 0 0 0 0

b 0.94+0.12
−0.10 1.03+0.15

−0.13 0.963+0.075
−0.081 1.061+0.096

−0.105 0.956+0.075
−0.076 0.962+0.073

−0.083 1.009+0.068
−0.091 1.068+0.066

−0.079

w −1 −1 −1 −1 −1.05+0.13
−0.14 −1 −1 −1

α −0.071+0.042
−0.047 0 0 0 0 0 0 0

Ωtot 1.056+0.045
−0.045 1.058+0.039

−0.041 0 0 0 0 0 0

Ωm 0.40+0.10
−0.09 0.406+0.093

−0.091 0.273+0.042
−0.041 0.380+0.087

−0.074 0.294+0.033
−0.032 0.301+0.045

−0.042 0.316+0.046
−0.041 0.309+0.053

−0.039

h2Ωm 0.126+0.019
−0.019 0.126+0.016

−0.019 0.1438+0.0084
−0.0080 0.158+0.015

−0.012 0.147+0.012
−0.011 0.1454+0.0091

−0.0082 0.1486+0.0095
−0.0084 0.1481+0.0091

−0.0077

h 0.55+0.11
−0.06 0.550+0.092

−0.055 0.725+0.049
−0.036 0.645+0.048

−0.040 0.708+0.033
−0.030 0.695+0.039

−0.031 0.685+0.033
−0.028 0.693+0.038

−0.040

τ 0.32+0.19
−0.17 0.18+0.31

−0.10 0.127+0.081
−0.059 0.127+0.085

−0.058 0.113+0.090
−0.059 0.124+0.083

−0.057 < 0.23 (95%) < 0.17 (95%)

zion 25.3+4.8
−8.8 18+10

−7 14.1+4.8
−4.7 14.9+5.4

−4.8 13.6+5.7
−5.2 14.4+5.2

−4.7 < 20 (95%) < 18 (95%)

As 1.12+0.43
−0.31 0.86+0.68

−0.16 0.82+0.15
−0.10 0.83+0.16

−0.09 0.80+0.15
−0.09 0.81+0.15

−0.09 0.72+0.15
−0.07 0.64+0.10

−0.04

At 0.14+0.12
−0.09 0 0.16+0.15

−0.11 0 0 0 0 0

β 0.633+0.081
−0.076 0.587+0.066

−0.062 0.506+0.056
−0.053 0.554+0.059

−0.054 0.533+0.051
−0.048 0.537+0.056

−0.052 0.529+0.059
−0.052 0.493+0.060

−0.051

t0[Gyr] 15.8+1.5
−1.8 15.9+1.3

−1.5 13.32+0.27
−0.33 13.65+0.25

−0.28 13.47+0.26
−0.27 13.54+0.23

−0.27 13.55+0.21
−0.23 13.51+0.32

−0.31

σ8 0.91+0.11
−0.10 0.86+0.13

−0.11 0.919+0.086
−0.073 0.823+0.098

−0.077 0.928+0.084
−0.076 0.917+0.090

−0.072 0.879+0.088
−0.062 0.842+0.069

−0.053

H2 0.441+0.013
−0.012 0.4577+0.0086

−0.0082 0.4535+0.0081
−0.0084 0.4521+0.0091

−0.0100 0.4545+0.0087
−0.0090 0.4550+0.0083

−0.0082 0.4549+0.0082
−0.0083 0.475+0.018

−0.020

H3 0.422+0.027
−0.031 0.444+0.026

−0.025 0.468+0.019
−0.017 0.472+0.022

−0.019 0.461+0.018
−0.017 0.459+0.018

−0.016 0.460+0.017
−0.015 0.485+0.020

−0.018

A∗ 0.587+0.049
−0.041 0.582+0.041

−0.036 0.632+0.022
−0.021 0.648+0.028

−0.025 0.639+0.027
−0.028 0.635+0.024

−0.022 0.639+0.024
−0.022 0.586+0.024

−0.025

Mν [eV] 0 0 0 < 1.74 (95%) 0 0 0 0

χ2/dof 1444.4/1357 1445.4/1359 1446.9/1359 1447.3/1359 1622.0/1531 1447.2/1360 987.8/911 134.6/163

which raised the ωb prediction from ωb = 0.0125±0.00125
[45, 46].

The existence of dark matter could be inferred from
CMB alone only as recently as 2001 [22], cf. [47], yet
Figure 4 shows that WMAP alone requires dark matter
at very high significance, refuting the suggestion of [48]
that an alternative theory of gravity with no dark matter
can explain CMB observations.

Table 3 shows that once WMAP and SDSS are com-
bined, the constraints on three of the six vanilla parame-
ters (ωb, ωd and ns) are quite robust to the choice of the-
oretical priors on the other parameters. This is because
the CMB information that constrains them is mostly the
relative heights of the first three acoustic peaks, which
are left unaffected by all the other parameters except α.
The four parameters (Ωk, r, w, fν) that are fixed by pri-
ors in many published analyses cause only a horizontal
shift of the peaks (Ωk and w) and modified CMB power
on larger angular scales (late ISW effect from Ωk and w,
tensor power from r).

Figure 5 illustrates that two of the most basic cosmo-
logical parameters, Ωm and h, are not well constrained
by WMAP alone even for vanilla models, uncertain by
factors of about two and five, respectively (at 95% confi-
dence). After including the SDSS information, however,
the constraints are seen to shrink dramatically, giving
Hubble parameter constraints h ≈ 0.70+0.04

−0.03 that are even
tighter than (and in good agreement with) those from the
HST project, h = 0.72 ± 0.07 [49], which is of course a
completely independent measurement based on entirely
different physics. (But see the next section for the cru-
cial caveats.) Our results also agree well with those from
the WMAP team, who obtained h ≈ 0.73 ± 0.03 [6] by
combining WMAP with the 2dFGRS. Indeed, our value
for h is about 1 σ lower. This is because the SDSS
power spectrum has a slightly bluer slope than that of
2dFGRS, favoring slightly higher Ωm-values (we obtain
Ωm = 0.30 ± 0.04 as compared to the WMAP+2dFGRS
value Ωm = 0.26 ± 0.05). As discussed in more detail
in Section VIII, this slight difference may be linked to
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Table 4: 1σ constraints on cosmological parameters as progressively more information/assumptions are added. First column uses WMAP
data alone and treats the 9 parameters (τ, Ωk,ΩΛ, ωd, ωb, As, ns, α, r) as unknown, so the only assumptions are fν = 0, w = −1. Moving

to the right in the table, we add the assumptions r = α = 0, then add SDSS information, then add SN Ia information, then add the
assumption that τ < 0.3. The next two columns are for 6-parameter vanilla models (Ωk = r = α = 0), first using WMAP+SDSS data

alone, then adding small-scale non-WMAP CMB data. The last two columns use WMAP+SDSS alone for 5-parameter models assuming
ns = 1 (“vanilla lite”) and ns = 0.96, r = 0.15 (V ∝ φ2 stochastic eternal inflation), respectively.

9 parameters (τ, Ωk,ΩΛ, ωd, ωb, As, ns, α, r) free WMAP+SDSS, 6 vanilla parameters free

WMAP +r = α = 0 +SDSS +SN Ia +τ < 0.3 +other CMB +ns = 1 +V (φ) ∝ φ2

e−2τ 0.52+0.21
−0.15 0.65+0.19

−0.32 0.69+0.15
−0.32 0.44+0.34

−0.13 0.75+0.11
−0.12 0.780+0.094

−0.119 0.813+0.081
−0.092 0.720+0.057

−0.049 0.833+0.063
−0.059

Θs 0.602+0.010
−0.006 0.603+0.015

−0.005 0.600+0.013
−0.004 0.606+0.011

−0.010 0.5971+0.0034
−0.0034 0.5965+0.0031

−0.0030 0.5956+0.0025
−0.0026 0.5979+0.0024

−0.0024 0.5953+0.0021
−0.0022

ΩΛ 0.54+0.24
−0.33 0.53+0.24

−0.32 0.653+0.082
−0.084 0.725+0.039

−0.044 0.695+0.034
−0.037 0.699+0.042

−0.045 0.691+0.032
−0.040 0.707+0.031

−0.039 0.685+0.032
−0.041

h2Ωd 0.105+0.023
−0.023 0.108+0.022

−0.034 0.103+0.016
−0.024 0.090+0.028

−0.016 0.115+0.012
−0.012 0.1222+0.0090

−0.0082 0.1231+0.0075
−0.0068 0.1233+0.0089

−0.0079 0.1233+0.0082
−0.0071

h2Ωb 0.0238+0.0035
−0.0027 0.0241+0.0055

−0.0020 0.0232+0.0051
−0.0017 0.0263+0.0042

−0.0036 0.0230+0.0013
−0.0011 0.0232+0.0013

−0.0010 0.0228+0.0010
−0.0008 0.0238+0.0006

−0.0006 0.0226+0.0006
−0.0006

fν 0 0 0 0 0 0 0 0 0

ns 0.97+0.13
−0.10 1.01+0.18

−0.06 0.98+0.18
−0.04 1.10+0.11

−0.13 0.979+0.036
−0.029 0.977+0.039

−0.025 0.966+0.025
−0.020 1 0 .96

nt + 1 0.9847+0.0097
−0.0141 1 1 1 1 1 1 1 0 .993

Ap 0.593+0.053
−0.044 0.602+0.053

−0.051 0.584+0.038
−0.028 0.582+0.043

−0.025 0.613+0.034
−0.033 0.633+0.024

−0.022 0.631+0.020
−0.019 0.642+0.023

−0.022 0.629+0.021
−0.019

r < 0.50 (95%) 0 0 0 0 0 0 0 0 .15

b 1 1 1.03+0.15
−0.13 0.93+0.10

−0.08 0.998+0.098
−0.088 0.962+0.073

−0.083 0.990+0.060
−0.062 0.918+0.036

−0.033 1.006+0.043
−0.039

w −1 −1 −1 −1 −1 −1 −1 −1 −1

α −0.075+0.047
−0.055 0 0 0 0 0 0 0 0

Ωtot 1.095+0.094
−0.144 1.086+0.057

−0.128 1.058+0.039
−0.041 1.054+0.048

−0.041 1.012+0.018
−0.022 0 0 0 0

Ωm 0.57+0.45
−0.33 0.55+0.47

−0.29 0.406+0.093
−0.091 0.328+0.050

−0.049 0.317+0.053
−0.045 0.301+0.045

−0.042 0.309+0.040
−0.032 0.293+0.039

−0.031 0.315+0.041
−0.032

h2Ωm 0.128+0.022
−0.021 0.132+0.021

−0.028 0.126+0.016
−0.019 0.117+0.024

−0.013 0.138+0.012
−0.012 0.1454+0.0091

−0.0082 0.1459+0.0077
−0.0071 0.1471+0.0090

−0.0080 0.1459+0.0084
−0.0073

h 0.48+0.27
−0.12 0.50+0.16

−0.13 0.550+0.092
−0.055 0.599+0.090

−0.062 0.660+0.067
−0.064 0.695+0.039

−0.031 0.685+0.027
−0.026 0.708+0.023

−0.024 0.680+0.022
−0.024

τ 0.33+0.17
−0.17 0.22+0.34

−0.13 0.18+0.31
−0.10 0.41+0.17

−0.28 0.143+0.089
−0.066 0.124+0.083

−0.057 0.103+0.060
−0.047 0.165+0.035

−0.038 0.092+0.036
−0.036

zion 25.9+4.4
−8.8 20.1+9.2

−8.3 18+10
−7 26.7+3.2

−12.4 15.6+5.1
−5.0 14.4+5.2

−4.7 12.8+4.3
−4.2 17.0+2.2

−2.6 11.9+2.9
−3.4

As 1.14+0.42
−0.31 0.97+0.73

−0.23 0.86+0.68
−0.16 1.30+0.50

−0.51 0.82+0.14
−0.11 0.81+0.15

−0.09 0.777+0.100
−0.072 0.893+0.051

−0.053 0.758+0.050
−0.050

At 0.14+0.13
−0.10 0 0 0 0 0 0 0 0.1137+0.0075

−0.0074

β 0.73+0.28
−0.29 0.72+0.29

−0.24 0.587+0.066
−0.062 0.577+0.062

−0.063 0.530+0.050
−0.045 0.537+0.056

−0.052 0.534+0.044
−0.046 0.553+0.054

−0.047 0.525+0.052
−0.045

t0[Gyr] 16.5+2.6
−3.1 16.3+2.3

−1.8 15.9+1.3
−1.5 15.6+1.4

−1.8 14.1+1.0
−0.9 13.54+0.23

−0.27 13.62+0.20
−0.20 13.40+0.13

−0.12 13.67+0.12
−0.12

σ8 0.90+0.13
−0.13 0.87+0.15

−0.13 0.86+0.13
−0.11 0.948+0.089

−0.101 0.882+0.094
−0.084 0.917+0.090

−0.072 0.894+0.060
−0.055 0.966+0.046

−0.050 0.879+0.041
−0.046

H2 0.441+0.013
−0.014 0.4581+0.0090

−0.0083 0.4577+0.0086
−0.0082 0.4585+0.0086

−0.0093 0.4558+0.0082
−0.0083 0.4550+0.0083

−0.0082 0.4552+0.0087
−0.0079 0.4543+0.0081

−0.0081 0.4556+0.0081
−0.0081

H3 0.424+0.043
−0.040 0.455+0.033

−0.029 0.444+0.026
−0.025 0.457+0.020

−0.021 0.449+0.021
−0.021 0.459+0.018

−0.016 0.454+0.013
−0.012 0.467+0.012

−0.011 0.451+0.011
−0.010

A∗ 0.595+0.056
−0.048 0.599+0.055

−0.064 0.582+0.041
−0.036 0.567+0.058

−0.028 0.616+0.033
−0.032 0.635+0.024

−0.022 0.634+0.020
−0.018 0.642+0.023

−0.022 0.634+0.021
−0.019

Mν [eV] 0 0 0 0 0 0 0 0 0

χ2/dof 1426.1/1339 1428.4/1341 1445.4/1359 1619.6/1530 1621.8/1530 1447.2/1360 1475.6/1395 1447.9/1359 1447.1/1395

differences in modeling of non-linear redshift space dis-
tortions and bias. For a thorough and up-to-date review
of recent h− and Ωm-determinations, see [6].

Whereas the constraints of ωb, ωd and ns are rather
robust, we will see in the following section that our con-
straints on h and Ωm hinge crucially on the assump-
tion that space is perfectly flat, and become substantially
weaker when dropping that assumption.

The last columns of Table 3 demonstrate excellent con-
sistency with pre-WMAP CMB data (Appendix A.3),
which involves not only independent experiments but also
partly independent physics, with much of the information
coming from small angular scales ℓ ∼> 600 where WMAP
is insensitive. In other words, our basic results and er-
ror bars still stand even if we discard either WMAP or
pre-WMAP data. Combining WMAP and smaller-scale
CMB data (Table 4, 3rd last column) again reflects this

consistency, tightening the error bars around essentially
the same central values.

Figure 6 compares various constraints on the linear
clustering amplitude σ8. Constraints from both galaxy
clusters [50–52] (black) and weak gravitational lens-
ing [53–55] (green/grey) are shown as shaded bands in
the (Ωm, σ8)-plane for the recent measurements listed
in Table 5 and are seen to all be consistent with the
WMAP+SDSS allowed region. However, we see that
there is no part of the allowed region that simultane-
ously matches all the cluster constraints, indicating that
cluster-related systematic uncertainties such as the mass-
temperature relation may still not have been fully prop-
agated into the quoted cluster error bars.

Comparing Figure 6 with Figure 2 from [68] demon-
strates excellent consistency with an analysis combining
the weak lensing data of [54] (Table 5) with WMAP,
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FIG. 3: 95% constraints in the (ns, ωb) plane. The shaded dark
red/grey region is ruled out by WMAP alone for 6-parameter
“vanilla” models, leaving the long degeneracy banana discussed
in the text. The shaded light red/grey region is ruled out when
adding SDSS information. The hatched band is required by Big
Bang Nucleosynthesis (BBN). From right to left, the three vertical
bands correspond to a scale-invariant Harrison-Zel’dovich spectrum
and to the common inflationary predictions ns = 1 − 2/N ∼ 0.96
and ns = 1 − 3/N ∼ 0.94 (Table 6), assuming that the number
of e-foldings between horizon exit of the observed fluctuations and
the end of inflation is 50 < N < 60.

small-scale CMB data and an ωb-prior from Big Bang Nu-
cleosynthesis. Figure 6 also shows good consistency with
Ωm-estimates from cluster baryon fractions [8], which in
turn are larger than estimates based on mass-to-light ra-
tio techniques reported in [8] (see [69] for a discussion of
this).

The constraints on the bias parameter b in Tables 3
and 4 refer to the clustering amplitude of SDSS L∗

galaxies at the effective redshift of the survey relative
to the clustering amplitude of dark matter at z = 0.
If we take z ∼ 0.15 as the effective redshift based on
Figure 31 in [20], then the “vanilla lite” model (sec-
ond last column of Table 4) gives dark matter fluctua-
tions 0.925 times their present value and hence a phys-
ical bias factor b∗ = b/0.925 = 0.918/0.925 ≈ 0.99, in
good agreement with the completely independent mea-
surement b∗ = 1.04 ± 0.11 [21] based on the bispectrum
of L∗ 2dFGRS galaxies. A thorough discussion of such
bias cross-checks is given by [70].

FIG. 4: 95% constraints in the (ωd, ωb) plane. Shaded dark
red/grey region is ruled out by WMAP alone for 6-parameter
“vanilla” models. The shaded light red/grey region is ruled out
when adding SDSS information. The hatched band is required by
Big Bang Nucleosynthesis (BBN).

Table 5: Recent constraints in the (Ωm, σ8)-plane.

Analysis Measurement

Clusters:

Voevodkin & Vikhlinin ’03 [56] σ8 = 0.60 + 0.28Ω0.5
m ± 0.04

Bahcall & Bode ’03, z < 0.2 [50] σ8(Ωm/0.3)0.60 = 0.68 ± 0.06

Bahcall & Bode ’03, z > 0.5 [50] σ8(Ωm/0.3)0.14 = 0.92 ± 0.09

Pierpaoli et al. ’02 [57] σ8 = 0.77+0.05
−0.04

Allen et al. ’03 [52] σ8(Ωm/0.3)0.25 = 0.69 ± 0.04

Schueckeret al. ’02 [58] σ8 = 0.711+0.039
−0.031

Viana et al. ’02 [59] σ8 = 0.78+0.15
−0.03 (for Ωm = 0.35)

Seljak ’02 [60] σ8(Ωm/0.3)0.44 = 0.77 ± 0.07

Reiprich & Böhringer ’02 [61] σ8 = 0.96+0.15
−0.12

Borgani et al. ’01 [62] σ8 = 0.66 ±−0.06

Pierpaoli et al. ’01 [51] σ8(Ωm/0.3)0.60 = 1.02+0.070
−0.076

Weak lensing:

Heymans et al. ’03 [63] σ8(Ωm/0.3)0.6 = 0.67 ± 0.10

Jarvis et al. ’02 [64] σ8(Ωm/0.3)0.57 = 0.71+0.06
−0.08

Brown et al. ’02 [53] σ8(Ωm/0.3)0.50 = 0.74 ± 0.09

Hoekstra et al. ’02 [54] σ8(Ωm/0.3)0.52 = 0.86+0.05
−0.07

Refregieret al. ’02 [65] σ8(Ωm/0.3)0.44 = 0.94+0.24
−0.24

Bacon et al. ’02 [55] σ8(Ωm/0.3)0.68 = 0.97 ± 0.13

Van Waerbeke et al. ’02 [66] σ8(Ωm/0.3)(0.24∓0.18)Ωm−0.49

= 0.94+0.14
−0.12

Hamana et al. ’02 [67] σ8(Ωm/0.3)−0.37 = (0.78+0.27
−0.12)
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FIG. 5: 95% constraints in the (Ωm, h) plane. Shaded dark
red/grey region is ruled out by WMAP alone for 6-parameter
“vanilla” models, leaving the long degeneracy banana discussed
in the text. The shaded light red/grey region is ruled out when
adding SDSS information, which can be understood as SDSS accu-
rately measuring the P (k) “shape parameter” hΩm = 0.21 ± 0.03
at 2σ (sloping hatched band). The horizontal hatched band is re-
quired by the HST key project [49]. The dotted line shows the fit
h = 0.7(Ωm/0.3)−0.35, explaining the origin of the accurate con-
straint h(Ωm/0.3)0.35 = 0.70 ± 0.01 (1σ).

IV. CURVED MODELS

Let us now spice up the vanilla model space by adding
spatial curvature Ωk as a free parameter, both to con-
strain the curvature and to quantify how other con-
straints get weakened when dropping the flatness as-
sumption.

Figures 7 and 8 show that there is a strong degeneracy
between the curvature of the universe Ωk ≡ 1−Ωtot and
both the Hubble parameter h and the age of the universe
t0, when constrained by WMAP alone (even with only
the seven parameters we are now considering allowed to
change); without further information or priors, one can-
not simultaneously demonstrate spatial flatness and mea-
sure h or t0. We see that although WMAP alone abhors
open models, requiring Ωtot ≡ Ωm + ΩΛ = 1 − Ωk ∼

> 0.9
(95%), closed models with Ωtot as large as 1.4 are still
marginally allowed provided that the Hubble parameter
h ∼ 0.3 and the age of the Universe t0 ∼ 20 Gyr. Al-
though most inflation models do predict space to be flat
and closed inflation models require particularly ugly fine-
tuning [71], a number of recent papers on other subjects
have considered nearly-flat models either to explain the

FIG. 6: 95% constraints in the (Ωm, σ8) plane. Shaded dark
red/grey region is ruled out by WMAP alone for 6-parameter
“vanilla” models. The shaded light red/grey region is ruled out
when adding SDSS information. The 95% confidence regions are
hatched for various recent cluster (black) and lensing (green/grey)
analyses as discussed in the text. The vertical lines indicate the
constraints described in [8] from mass-to-light ratios in galaxies
and clusters (0.06 ∼< Ωm ∼< 0.22) and from cluster baryon fractions

(0.22 ∼< Ωm ∼< 0.37).

low CMB quadrupole [72] or for anthropic reasons [73–
75], so it is clearly interesting and worthwhile to test the
flatness assumption observationally. In the same spirit,
measuring the Hubble parameter h independently of the-
oretical assumptions about curvature and measurements
of galaxy distances at low redshift provides a powerful
consistency check on our whole framework.

Including SDSS information is seen to reduce the cur-
vature uncertainty by about a factor of three. We also
show the effect of adding the above-mentioned prior
τ < 0.3 and SN Ia information from the 172 SN Ia com-
piled by [35], which is seen to further tighten the cur-
vature constraints to Ωtot = 1.01 ± 0.02 (1σ), providing
a striking vindication of the standard inflationary pre-
diction Ωtot = 1. Yet even with all these constraints,
a strong degeneracy is seen to persist between curvature
and h, and curvature and t0, so that the HST key project
[49] remains the most accurate measurement of h. If we
add the additional assumption that space is exactly flat,
then uncertainties shrink by factors around 3 and 4 for
h and t0, respectively, still in beautiful agreement with
other measurements. The age limit t0 > 12 Gyr shown in
Figure 8 is the 95% lower limit from white dwarf ages by
[76]; for a thorough reviews of recent age determinations,
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FIG. 7: 95% constraints in the (Ωtot, h) plane. Shaded dark
red/grey region is ruled out by WMAP alone for 7-parameter
curved models, showing that CMB fluctuations alone do not simul-
taneously show space to be flat and measure the Hubble parameter.
The shaded light red/grey region is ruled out when adding SDSS
information. Continuing inwards, the next two regions are ruled
out when adding the τ < 0.3 assumption and when adding SN Ia
information as well. The light hatched band is required by the HST
key project [49]. The dotted line shows the fit h = 0.7Ω−5

tot, explain-

ing the origin of the accurate constraints hΩ5
tot = 0.703+0.029

−0.024 and

Ωtot(h/0.7)0.2 = 1.001+0.008
−0.007 (1σ).

see [6, 77].

This curvature degeneracy is also seen in Figure 9,
which illustrates that the existence of dark energy ΩΛ >
0 is only required at high significance when augment-
ing WMAP with either galaxy clustering information or
SN Ia information (as also pointed out by [6]). This
stems from the well-known geometric degeneracy where
Ωk and ΩΛ can be altered so as to leave the acous-
tic peak locations unchanged, which has been exhaus-
tively discussed in the pre-WMAP literature — see, e.g.,
[12, 13, 15, 16, 78].

In conclusion, we obtain sharp constraints on spatial
curvature and interesting constraints on h, t0 and ΩΛ, but
only when combining WMAP with SDSS and/or other
data. In other words, within the class of almost flat
models, the WMAP-only constraints on h, t0 and ΩΛ

are weak, and including SDSS gives a huge improvement
in precision.

Since the constraints on h and t0 are further tight-
ened by a large factor if space is exactly flat, can one
justify the convenient assumption Ωtot = 1? Although
WMAP alone marginally allows Ωtot = 1.5 (Figure 7),

FIG. 8: 95% constraints in the (Ωtot, t0) plane. Shaded dark
red/grey region is ruled out by WMAP alone for 7-parameter
curved models, showing that CMB fluctuations do not simulta-
neously show space to be flat and measure the age of the Universe.
The shaded light red/grey region is ruled out when adding SDSS
information. Continuing inwards, the next two regions are ruled
out when adding the τ < 0.3 assumption and when adding SN Ia
information as well. Stellar age determinations (see text) rule out
t0 < 12 Gyr.

WMAP+SDSS shows that Ωtot is within 15% of unity.
It may therefore be possible to bolster the case for per-
fect spatial flatness by demolishing competing theoretical
explanations of the observed approximate flatness — for
instance, it has been argued that if the near-flatness is
due to an anthropic selection effect, then one expects de-
partures from Ωtot ∼ 1 of order unity [73, 75], perhaps
larger than we now observe. This approach is particu-
larly promising if one uses a prior on h. Imposing a hard
limit 0.58 < h < 0.86 corresponding to the 2σ range from
the HST key project [49], we obtain Ωtot = 1.030+0.029

−0.029

from WMAP alone, Ωtot = 1.023+0.020
−0.033 adding SDSS

and Ωtot = 1.010+0.018
−0.017 when also adding SN Ia and the

τ < 0.3 prior.1

1 Within the framework of Bayesian inference, such an argument
would run as in the following example. Let us take the current
best measurement from above to be Ωtot = 1.01±0.02 and use it
to compare an inflation model predicting Ωtot = 1±10−5 with a
non-inflationary FRW model predicting that a typical observer
sees Ωtot = 1 ± 1 because of anthropic selection effects [73–75].
Convolving with the 0.02 measurement uncertainty, our two rival
models thus predict that our observed best-fit value is drawn
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FIG. 9: 95% constraints in the (Ωm,ΩΛ) plane. Shaded dark
red/grey region is ruled out by WMAP alone for 7-parameter
curved models, illustrating the well-known geometric degeneracy
between models that all have the same acoustic peak locations.
The shaded light red/grey region is ruled out when adding SDSS
information. Continuing inwards, the next two regions are ruled
out when adding the τ < 0.3 assumption and when including SN
Ia information as well. Models on the diagonal dotted line are flat,
those below are open and those above are closed. The constraints
in this plot agrees well with those in Figure 13 from [6] when taking
the τ prior into account.

V. TESTING INFLATION

A. The generic predictions

Two generic predictions from inflation are perfect flat-
ness (Ωk = 0, i.e., Ωtot ≡ 1 − Ωk = 1) and approxi-
mate scale-invariance of the primordial power spectrum

from distributions Ωtot = 1±0.02 and Ωtot = 1±1, respectively.
If we approximate these distributions by Gaussians f(Ωtot) =

e−[(Ωtot−1)/σ]2/2/
√

2πσ with σ = 0.02 and σ = 1, respectively,
we find that the observed value is about 22 times more likely
given inflation. In other words, if we view both models as equally
likely from the outset, the standard Bayesian calculation

Explanation Prior prob. Obs. likelihood Posterior prob.

Inflation 0.5 17.6 0.96

Anthropic 0.5 0.80 0.04

strongly favors the inflationary model. Note that it did not have
to come out this way: observing Ωtot = 0.90 ± 0.02 would have
given 99.99% posterior probability for the anthropic model.

(ns ∼ 1). Tables 2-4 show that despite ever-improving
data, inflation still passes both of these tests with flying
colors.2

The tables show that although all cases we have ex-
plored are consistent with Ωtot = ns = 1, adding priors
and non-CMB information shrinks the error bars by fac-
tors around 6 and 4 for Ωtot and ns, respectively.

For the flatness test, Table 4 shows that Ωtot is within
about 20% of unity with 68% confidence from WMAP
alone without priors (even Ωtot ∼ 1.5 is allowed at the
95% confidence contour). When we include SDSS, the
68% uncertainty tightens to 10%, and the errors shrink
impressively to the percent level with more data and pri-
ors: Ωtot = 1.012+0.018

−0.022 using WMAP, SDSS, SN Ia and
τ < 0.3.

For the scalar spectral index, Table 4 shows that ns ∼ 1
to within about 15% from WMAP alone without priors,
tightening to ns = 0.977+0.039

−0.025 when adding SDSS and as-
suming the vanilla scenario, so the cosmology community
is rapidly approaching the milestone where the depar-
tures from scale-invariance that most popular inflation
models predict become detectable.

B. Tensor fluctuation

The first really interesting confrontation between the-
ory and observation was predicted to occur in the (ns, r)
plane (Figure 10), and the first skirmishes have already
begun. The standard classification of slow-roll inflation
models [80–82] characterized by a single field inflaton po-
tential V (φ) conveniently partitions this plane into three
parts (Figure 10) depending on the shape of V (φ):

1. Small-field models are of the form expected from
spontaneous symmetry breaking, where the poten-
tial has negative curvature V (φ)′′ < 0 and the field
φ rolls down from near the maximum, and all pre-
dict r < 8

3 (1 − ns), ns ≤ 1.

2. Large-field models are characteristic of so-called
chaotic initial conditions, in which φ starts out far
from the minimum of a potential with positive cur-
vature (V ′′(φ) > 0), and all predict 8

3 (1 − ns) <
r < 8(1 − ns), ns ≤ 1.

3. Hybrid models are characterized by a field rolling
toward a minimum with V 6= 0. Although they
generally involve more than one inflaton field, they
can be treated during the inflationary epoch as
single-field inflation with V ′′ > 0 and predict r >
8
3 (1 − ns), also allowing ns > 1.

2 Further successes, emphasized by the WMAP team and [79],
are the inflationary predictions of adiabaticity and phase coher-
ence which account for the peak/trough structure observed in
the CMB power spectrum.
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FIG. 10: 95% constraints in the (ns, r) plane. Shaded dark
red/grey region is ruled out by WMAP alone for 7-parameter mod-
els (the vanilla models plus r). The shaded light red/grey region
is ruled out when adding SDSS information. The two dotted lines
delimit the three classes of inflation models known as small-field,
large-field and hybrid models. Some single-field inflation models
make highly specific predictions in this plane as indicated. From
top to bottom, the figure shows the predictions for V (φ) ∝ φ6

(line segment; ruled out by CMB alone), V (φ) ∝ φ4 (star; a text-
book inflation model; on verge of exclusion) and V (φ) ∝ φ2 (line
segment; the eternal stochastic inflation model; still allowed), and
V (φ) ∝ 1 − (φ/φ∗)2 (horizontal line segment with r ∼ 0; still al-
lowed). These predictions assume that the number of e-foldings
between horizon exit of the observed fluctuations and the end of
inflation is 64 for the φ4 model and between 50 and 60 for the
others as per [86].

These model classes are summarized in Table 6 together
with a sample of special cases. For details and deriva-
tions of the tabulated constraints, see [5, 80–85]. For
comparison with other papers, remember that we use the
same normalization convention for r as CMBfast and the
WMAP team, where r = −8nt for slow-roll models. The
limiting case between small-field and large-field models
is the linear potential V (φ) ∝ φ, and the limiting case
between large-field and hybrid models is the exponential
potential V (φ) ∝ eφ/φ∗ . The WMAP team [5] further
refine this classification by splitting the hybrid class into
two: models with ns < 1 and models with ns > 1.

Many inflationary theorists had hoped that early data
would help distinguish between these classes of models,
but Figure 10 shows that all three classes are still allowed.

What about constraints on specific inflation models as
opposed to entire classes? Here the situation is more
interesting. Some models, such as hybrid ones, allow

two-dimensional regions in this plane. Table 6 shows
that many other models predict a one-dimensional line or
curve in this plane. Finally, a handful of models are ex-
tremely testable, making firm predictions for both ns and
r in terms of N , the number of e-foldings between horizon
exit of the observed fluctuations and the end of inflation.
Recent work [86, 87] has shown that 50 ∼

< N ∼
< 60 is re-

quired for typical inflation models. The quartic model
V ∼ φ4 is an anomaly, requiring N ≈ 64 with very
small uncertainty. Figure 10 shows that power law mod-
els V ∝ φp are ruled out by CMB alone for p = 6 and
above. Figure 10 indicates that the textbook V ∝ φ4

model (indicated by a star in the figure) is marginally
allowed. [5] found it marginally ruled out, but this as-
sumed N = 50 — the subsequent result N ≈ 64 [86]
pushes the model down to the right and make it less dis-
favored. V ∝ φ2 has been argued to be the most natural
power-law model, since the Taylor expansion of a generic
function near its minimum has this shape and since there
is no need to explain why quantum corrections have not
generated a quadratic term. This potential is used in the
stochastic eternal inflation model [88], and is seen to be
firmly in the allowed region, as are the small-field “tomb-
stone model” from Table 6 and the GUT-scale model of
[89] (predicting ns = 1 − 1/N ≈ 0.98, r ≈ 10−8).

In conclusion, Figure 10 shows that observations are
now beginning to place interesting constraints on infla-
tion models in the (ns, r)-plane. As these constraints
tighten in coming years, they will allow us to distin-
guish between many of the prime contenders. For in-
stance, the stochastic eternal inflation model predicting
(ns, r) ≈ (0.96, 0.15) will become distinguishable from
models with negligible tensors, and in the latter cate-
gory, small-field models with, say, ns ∼< 0.95, will become
distinguishable from the scale-invariant case ns = 1.

C. A running spectral index?

Typical slow-roll models predict not only negligible
spatial curvature, but also that the running of the spec-
tral index α is unobservably small. We therefore assumed
Ωk = α = 0 when testing such models above.

Let us now turn to the issue of searching for departures
from a power law primordial power spectrum. This is-
sue has generated recent interest after the WMAP team
claim that α < 0 was favored over α = 0, at least at
modest statistical significance, with the preferred value
being α ∼ −0.07 [5, 6].

Slow-roll models typically predict |α| of order N−2;
for these models, |α| is rarely above 10−3, much smaller
than the WMAP-team preferred value. Those inflation
models that do predict such a strong second derivative of
the primordial power spectrum (in log-log space) tend to
produce substantial third and higher derivatives as well,
so that a parabolic curve parametrized by As, ns and α
is a poor approximation of the model (e.g., [90]). Lack-
ing strong theoretical guidance one way or another, we
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Table 6: Sample inflation model predictions. N is the number of e-folds between horizon exit of the observed fluctuations and the end of
inflation.

Model Potential r ns

Small-field V ′′ < 0 r < 8
3
(1 − ns) ns ≤ 1

Parabolic V ∝ 1 −
(

φ
φ∗

)2
r = 8(1 − ns)e−N(1−ns) ∼< 0.06 ns < 1

Tombstone V ∝ 1 −
(

φ
φ∗

)4
r ∼< 10−3 ns = 1 − 3

N
∼ 0.95

V ∝ 1 −
(

φ
φ∗

)p
, p > 2 r ∼< 10−3 ns = 1 − 2

N
p−1
p−2 ∼> 0.93

Linear V ∝ φ r = 8
3
(1 − ns) ns ≤ 1

Large-field V ′′ > 0 8
3
(1 − ns) < r < 8(1 − ns) ns ≤ 1

Power-law V ∝ φp r = 4p
N

ns = 1 − 1+p/2
N

Quadratic V ∝ φ2 r = 8
N

∼ 0.15 ns = 1 − 2
N

∼ 0.96

Quartic V ∝ φ4 r = 16
N

∼ 0.29 ns = 1 − 3
N

∼ 0.95

Sextic V ∝ φ6 r = 24
N

∼ 0.44 ns = 1 − 4
N

∼ 0.93

Exponential V ∝ eφ/φ∗ r = 8(1 − ns) ns ≤ 1

Hybrid V ′′ > 0 r > 8
3
(1 − ns) Free

therefore drop our priors on Ωk and r when constraining
α.

Tables 2 and 3 show that our best-fit α-values agree
with those of [5], but are consistent with α = 0, since
the 95% error bars are of order 0.1. They show that χ2

drops by only 5 relative to vanilla models, which is not
statistically significant because a drop of 3 is expected
from freeing the three parameters Ωk, r and α. More-
over, we see that our WMAP-only constraint is similar
to our WMAP+SDSS constraint, showing that any hint
of running comes from the CMB alone, most likely from
the low quadrupole power [6]; see also [91, 92]. This is
at least qualitatively consistent with the WMAP team
analysis [6]; apart from the low quadrupole, most of the
evidence that α 6= 0 comes from CMB fluctuation data on
small scales (e.g., the CBI data [93]) and measurements
of the small-scale fluctuations from the Lyα forest; in-
deed, including the 2dFGRS data slightly weakens the
case for running. For the Lyα forest case, the key issue is
the extent to which the measurement uncertainties have
been adequately modeled [94], and this should be clar-
ified by the forthcoming Lyα forest measurements from
the SDSS.

VI. NEUTRINO MASS

It has long been known [95] that galaxy surveys are
sensitive probes of neutrino mass, since they can detect
the suppression of small-scale power caused by neutri-
nos streaming out of dark matter overdensities. For de-
tailed discussion of post-WMAP astrophysical neutrino
constraints, see [6, 96–99], and for an up-to-date review
of the theoretical and experimental situation, see [100].

Our neutrino mass constraints are shown in the Mν-
panel of Figure 2, where we allow our standard 6 “vanilla”
parameters and fν to be free. The most favored value is
Mν = 0, and obtain a 95% upper limit Mν < 1.7eV. Fig-
ure 11 shows that WMAP alone tells us nothing whatso-

FIG. 11: 95% constraints in the (ωd, fν) plane. Shaded dark
red/grey region is ruled out by WMAP alone when neutrino mass
is added to the 6 “vanilla” models. The shaded light red/grey
region is ruled out when adding SDSS information. The five curves
correspond to Mν , the sum of the neutrino masses, equaling 1, 2,
3, 4 and 5 eV, respectively — barring sterile neutrinos, no neutrino
can have a mass exceeding ∼ Mν/3.

ever about neutrino masses and is consistent with neu-
trinos making up 100% of the dark matter. Rather, the
power of WMAP is that it constrains other parameters
so strongly that it enables large-scale structure data to
measure the small-scale P (k)-suppression that massive
neutrinos cause.

The sum of the three neutrino masses (assuming stan-
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dard freezeout) is [38] Mν ≈ (94.4 eV)ωdfν . The neu-
trino energy density must be very close to the standard
freezeout density [101–103], given the large mixing angle
solution to the solar neutrino problem and near maxi-
mal mixing from atmospheric results— see [104, 106] for
up-to-date reviews. Any substantial asymmetries in neu-
trino density from the standard value would be “equili-
brated” and produce a primordial 4He abundance incon-
sistent with that observed.

Our upper limit is complemented by the lower limit
from neutrino oscillation experiments. Atmospheric neu-
trino oscillations show that there is at least one neu-
trino (presumably mostly a linear combination of νµ and
ντ ) whose mass exceeds a lower limit around 0.05 eV
[100, 104]. Thus the atmospheric neutrino data corre-
sponds to a lower limit ων ∼

> 0.0005, or fν ∼
> 0.004. The

solar neutrino oscillations occur at a still smaller mass
scale, perhaps around 0.008 eV [100, 105, 106]. These
mass-splittings are much smaller than 1.7 eV, suggest-
ing that all three mass eigenstates would need to be al-
most degenerate for neutrinos to weigh in near our upper
limit. Since sterile neutrinos are disfavored from being
thermalized in the early universe [107, 108], it can be as-
sumed that only three neutrino flavors are present in the
neutrino background; this means that none of the three
neutrinos can weigh more than about 1.7/3 = 0.6 eV.
The mass of the heaviest neutrino is thus in the range
0.04 − 0.6 eV.

A caveat about non-standard neutrinos is in order.
To first order, our cosmological constraint probes only
the mass density of neutrinos, ρν , which determines the
small-scale power suppression factor, and the velocity dis-

persion, which determines the scale below which the sup-
pression occurs. For the low mass range we have dis-
cussed, the neutrino velocities are high and the suppres-
sion occurs on all scales where SDSS is highly sensitive.
We thus measure only the neutrino mass density, and
our conversion of this into a limit on the mass sum as-
sumes that the neutrino number density is known and
given by the standard model freezeout calculation, 112
cm−3. In more general scenarios with sterile or other-
wise non-standard neutrinos where the freezeout abun-
dance is different, the conclusion to take away is an
upper limit on the total light neutrino mass density of
ρν < 4.8 × 10−28kg/m3 (95%). To test arbitrary non-
standard models, a future challenge will be to indepen-
dently measure both the mass density and the velocity
dispersion, and check whether they are both consistent
with the same value of Mν .

The WMAP team obtains the constraint Mν < 0.7 eV
[6] by combining WMAP with the 2dFGRS. This limit is
a factor of three lower than ours because of their stronger
priors, most importantly that on galaxy bias b deter-
mined using a bispectrum analysis of the 2dF galaxy
clustering data[21]. This bias was measured on scales
k ∼ 0.2 − 0.4h/Mpc and assumed to be the same on the
scales k < 0.2h/Mpc that were used in the analysis. In
this paper, we prefer not to include such a prior. Since

FIG. 12: Constraints in the (fν , σ8) plane. Shaded dark red/grey
region is ruled out by WMAP alone (95%) when neutrino mass is
added to the 6 “vanilla” models. The shaded light red/grey region
is ruled out when adding SDSS information. The recent claim that
fν > 0 [109] hinges on assuming that galaxy clusters require low σ8-
values (shaded horizontal band) and dissolves when using what we
argue are more reasonable uncertainties in the cluster constraints.

the bias is marginalized over, our SDSS neutrino con-
straints come not from the amplitude of the power spec-
trum, only from its shape. This of course allows us to
constrain b from WMAP+SDSS directly; we find values
consistent with unity (for L∗ galaxies) in almost all cases
(Tables 3 and 4). A powerful consistency test is that our
corresponding value β = 0.54+0.06

−0.05 from WMAP+SDSS
agrees well with the value β ∼ 0.5 measured from redshift
space distortions in [20].

Seemingly minor assumptions can make a crucial dif-
ference for neutrino conclusions, as discussed in detail
in [6, 96, 97]. A case in point is a recent claim that
nonzero neutrino mass has been detected by combining
WMAP, 2dFGRS and galaxy cluster data [109]. Figure
2 in that paper (middle left panel) shows that nonzero
neutrino mass is strongly disfavored only when including
data on X-ray cluster abundance, which is seen (lower
middle panel) to prefer a low normalization of order
σ8 ≈ 0.70 ± 0.05 (68%). Figure 12 provides intuition
for the physical origin on the claimed neutrino mass de-
tection. Since WMAP fixes the normalization at early
times before neutrinos have had their suppressing effect,
we see that the WMAP-allowed σ8-value drops as the
neutrino fraction fν increases. A very low σ8-value there-
fore requires a nonzero neutrino fraction. The particular
cluster analysis used by [109] happens to give one of the
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lowest σ8-values in the recent literature. Table 5 and Fig-
ure 6 show a range of σ8 values larger than the individual
quoted errors, implying the existence of significant sys-
tematic effects. If we expand the error bars on the cluster
constraints to σ8 = 0.8± 0.2, to reflect the spread in the
recent literature, we find that the evidence for a cosmo-
logical neutrino mass detection goes away. The sensitiv-
ity of neutrino conclusions to cluster σ8 normalization
uncertainties was also discussed in [109].

VII. DARK ENERGY EQUATION OF STATE

Although we now know its present density fairly accu-
rately, we know precious little else about the dark energy,
and post-WMAP research is focusing on understanding
its nature [110–118]. Above we have assumed that the
dark energy behaves as a cosmological constant with its
density independent of time, i.e., that its equation of
state w = −1. Figure 2 and Figure 13 show our con-
straints on w, assuming that the dark energy is homoge-
neous, i.e., does not cluster3. Although our analysis adds
improved galaxy and SN Ia data to that of the WMAP
team [6] and uses different assumptions, Figure 13 agrees
well with Figure 11 from [6] and our conclusions are qual-
itatively the same: adding w as a free parameter does not
help improve χ2 for the best fit, and all data are consis-
tent with the vanilla case w = −1, with uncertainties in w
at the 20% level. [110, 117] obtained similar constraints
with different data and an h-prior.

Tables 2 and 3 show the effect of dropping the w = −1
assumption on other parameter constraints. These ef-
fects are seen to be similar to those of dropping the flat-
ness assumption, but weaker, which is easy to understand
physically. As long as there are no spatial fluctuations
in the dark energy (as we have assumed), changing w
has only two effects on the CMB: it shifts the acoustic
peaks sideways by altering the angle-distance relation,
and it modifies the late Integrated Sachs-Wolfe (ISW) ef-
fect. Its only effect effect on the matter power spectrum
is to change its amplitude via the linear growth factor.
The exact same things can be said about the parameters
ΩΛ and Ωk, so the angle-diameter degeneracy becomes
a two-dimensional surface in the three-dimensional space
(Ωk, ΩΛ, w), broken only by the late ISW effect. Since
the peak-shifting is weaker for w than for Ωk (for changes

3 Dark energy clustering can create important modifications of the
CMB power spectrum and can weaken the w-constraints by in-
creasing degeneracies [117]. We have ignored the effect of dark
energy clustering since it depends on the dark energy sound
speed, which is in turn model-dependent and at present com-
pletely unknown. Indeed, all evidence for dark energy so far
traces back to the observed cosmic expansion history H(z) de-
parting from ΩΛ = 0 Friedmann equation, and if this departure
is caused by modified gravity rather than some sort of new sub-
stance, then there may be no dark energy fluctuations at all.

FIG. 13: 95% constraints in the (Ωm, w) plane. Shaded dark
red/grey region is ruled out by WMAP alone when equation of
state w is added to the 6 “vanilla” parameters. The shaded light
red/grey region is ruled out when adding SDSS information, and
the yellow/very light grey region is excluded when including SN Ia
information as well.

generating comparable late ISW modification), adding w
to vanilla models wreaks less havoc with, say, h than does
adding Ωk to vanilla models (Section IV).

VIII. DISCUSSION AND CONCLUSIONS

We have measured cosmological parameters using
the three-dimensional power spectrum P (k) from over
200,000 galaxies in the Sloan Digital Sky Survey (SDSS)
in combination with WMAP and other data. Let us first
discuss what we have and have not learned about cosmo-
logical parameters, then summarize what we have and
have not learned about the underlying physics.

A. The best fit model

All data we have considered are consistent with a
“vanilla” flat adiabatic ΛCDM model with no tilt, run-
ning tilt, tensor fluctuations, spatial curvature or mas-
sive neutrinos. Readers wishing to choose a concordance
model for a calculational purposes using Ockham’s razor
can adopt the best fit “vanilla lite” model

(τ, ΩΛ, ωd, ωb, As) = (0.17, 0.72, 0.12, 0.024, 0.89) (2)
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(Table 4, second last column). Note that this is even
simpler than 6-parameter vanilla models, since it has
ns = 1 and only 5 free parameters [119]. A more the-
oretically motivated 5-parameter model is that of the ar-
guably most testable inflation model, V ∝ φ2 stochas-
tic eternal inflation, which predicts (ns, r) = (0.15, 0.96)
(Figure 10) and prefers

(τ, ΩΛ, ωd, ωb, As) = (0.09, 0.68, 0.123, 0.023, 0.75) (3)

(Table 4, second last column).
Note that these numbers are in substantial agreement

with the results of the WMAP team [6], despite a com-
pletely independent analysis and independent redshift
survey data; this is a powerful confirmation of their re-
sults and the emerging standard model of cosmology.
Equally impressive is the fact that we get similar results
and error bars when replacing WMAP by the combined
pre-WMAP CMB data (compare the last columns of Ta-
ble 3). In other words, the concordance model and the
tight constraints on its parameters are no longer depen-
dent on any one data set — everything still stands even if
we discard either WMAP or pre-WMAP CMB data and
either SDSS or 2dFGRS galaxy data. No single data set
is indispensable.

As emphasized by the WMAP team, it is remarkable
that such a broad range of data are describable by such a
small number of parameters. Indeed, as is apparent from
Tables 2–4, χ2 does not improve significantly upon the
addition of further parameters for any set of data. How-
ever, the “vanilla lite” model is not a complete and self-
consistent description of modern cosmology; for example,
it ignores the well-motivated inflationary arguments for
expecting ns 6= 1.

B. Robustness to physical assumptions

On the other hand, the same criticism can be leveled
against 6-parameter vanilla models, since they assume
r = 0 even though some of the most popular inflation
models predict a significant tensor mode contribution.
Fortunately, Table 3 shows that augmenting vanilla mod-
els with tensor modes has little effect on other parame-
ters and their uncertainties, mainly just raising the best
fit spectral index ns from 0.98 to 1.01.

Another common assumption is that the neutrino den-
sity fν is negligible, yet we know experimentally that
fν > 0 and there is an anthropic argument for why neu-
trinos should make a small but non-negligible contribu-
tion [120]. The addition of neutrinos changes the slope of
the power spectrum on small scales; in particular, when
we allow fν to be a free parameter, the value of σ8 drops
by 10% and Ωm increases by 25% (Table 2).

We found that the assumption with the most striking
implications is that of perfect spatial flatness, Ωtot = 1
— dropping it dramatically weakens the limits on the
Hubble parameter and the age of the Universe, allowing
h = 0.5 and t0 = 18 Gyr. Fortunately, this flatness

assumption is well-motivated by inflation theory; while
anthropic explanations exist for the near flatness, they
do not predict the Universe to be quite as flat as it is
now observed to be.

Constraints on other parameters are also somewhat
weakened by allowing a running spectral index α 6= 0
and an equation of state w 6= −1, but we have argued
that these results are more difficult to take seriously
theoretically. It is certainly worthwhile testing whether
ns depends on k and whether ΩΛ depends on z, but
parametrizing such departures in terms of constants α
and w to quantify the degeneracy with other parameters
is unconvincing, since most inflation models predict ob-
servably large |α| to depend strongly on k and observably
large |w + 1| can depend strongly on z.

It is important to parametrize and constrain possible
departures the current cosmological framework: any test
that could have falsified it, but did not, bolsters its cred-
ibility. Post-WMAP work in this spirit has included con-
straints on the dark energy sound speed [117] and time
dependence [121, 122], the fine structure constant [123],
the primordial helium abundance [124, 125], isocurvature
modes [126] and features in the primordial power spec-
trum [127, 128].

C. Robustness to data details

How robust are our cosmological parameter measure-
ments to the choice of data and to our modeling thereof?

For the CMB, most of the statistical power comes from
the unpolarized WMAP data, which we confirmed by
repeating our 6-parameter analysis without polarization
information. The main effect of adding the polarized
WMAP data is to give a positive detection of τ (Sec-
tion VIII D 4 below). The quantity σ8e

−τ determines the
amplitudes of acoustic peak amplitudes, so the positive
detection of τ leads to a value of σ8 15% higher than
without the polarization data included.

For the galaxy P (k) data, there are options both for
what data set to use and how to model it. To get a
feeling for the quantitative importance of choices, we re-
peat a simple benchmark analysis for a variety of cases.
Let us measure the matter density Ωm using galaxy data
alone, treating As as a second free parameter and fixing
all others at the values Ωk = fν = α = 0, ωb = 0.024,
ns = 1, w = −1, b = 1 and h = 0.72. Roughly speaking,
we are thus fitting the measured galaxy power spectrum
to a power spectrum curve that we can shift horizontally
(with our “shape parameter” Ωm) and vertically (with
As). We have chosen this particular example because,
as described in Section III, it is primarily this shape pa-
rameter measurement that breaks the WMAP banana
degeneracy. The parameters τ and r of course have no
effect on P (k), and the remaining two are determined
by the matter density via the identities ΩΛ = 1 − Ωm,
ωd = h2Ωm − ωb.

Our results are summarized in Table 7. We stress
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Table 7: Robustness to data and method details.

Analysis Ωm

Baseline 0.291+0.033
−0.027

kmax = 0.15h/Mpc 0.297+0.038
−0.032

kmax = 0.1h/Mpc 0.331+0.079
−0.051

No bias correction 0.256+0.027
−0.024

Linear P (k) 0.334+0.027
−0.024

2dFGRS 0.251+0.036
−0.027

that they should not be interpreted as realistic measure-
ments of Ωm, since the other parameters have not been
marginalized over. This is why the error bars are seen to
be smaller even than when WMAP was included above
(last column of Table 4).

To avoid uncertainties associated with nonlinear red-
shift space distortions and scale-dependent galaxy bias,
we have used SDSS measurements of P (k) only for k ≤
kmax throughout this paper, chosing kmax = 0.2h/Mpc as
recommended in [20]. The WMAP team made this same
choice kmax = 0.2h/Mpc when analyzing the 2dFGRS
data [7]. An option would be to tighten this cut to be
still more cautious. Table 7 shows that cutting back to
kmax = 0.15h/Mpc has essentially no effect on the best-fit
Ωm-value and increases error bars by about 20%. Cut-
ting back all the way down to kmax = 0.1h/Mpc is seen
to more than double the baseline error bars, the baseline
measurement lying about 0.6σ below the new best fit.

As described in [20], the SDSS measurements were cor-
rected for luminosity-dependent bias. Table 7 shows that
if this were not done, Ωm would drop by about 0.03, or
1σ. This correction is of course not optional. However, if
the correction itself were somehow inaccurate at say the
10% level, one would expect a bias in Ωm around 0.003.

Just like the WMAP team [6, 7], we have used the non-
linear matter power spectrum for all our analysis. Table 7
shows that if we had used the linear spectrum instead,
then Ωm would rise by about 0.04, or 1.3σ. This happens
because the linear power spectrum is redder, with less
small-scale power, which can be roughly offset by rais-
ing Ωm and hence shifting the curve to the right. Like
the above-mentioned correction for luminosity-dependent
bias, correction for nonlinearities must be included. How-
ever, given the large uncertainties about how biasing be-
haves in this quasilinear regime, it may well be that this
correction is only accurate to 25%, say, in which case we
would expect an additional uncertainty in Ωm at the 0.01
level.

Finally, we have repeated the analysis using an en-
tirely different dataset, the P (k)-measurement from the
2dFGRS team [11]. Although the WMAP team used
kmax = 0.2h/Mpc, we used the data available online with
kmax = 0.15h/Mpc here as recommended by the 2dF-
GRS team [11]. Table 7 shows that 2dFGRS measures a
slightly redder power spectrum than SDSS, correspond-
ing to Ωm down by 0.04, or 1.3σ.

In conclusion, we see that a number of issues related to

FIG. 14: Effect of increasing the amount of SDSS data used, given
by the maximum k-value used. Top panel shows how the relative
errors on various parameters shrink as more data is included. For
the neutrino density Ων ≡ fνΩd, the absolute rather than relative
error is shown. Bottom panel shows the ratio of systematic errors
to statistical errors (from top panel) grows as smaller scales are
included. This is for the extreme case where nonlinear corrections
are present but completely ignored, which we view as a worst-case
scenario.

data selection and modeling can have noticeable effects
on the results. Internally to SDSS, such effects could
easily change Ωm by as much as 0.01, and the 2dFGRS
difference is about 0.04, or one standard deviation —
roughly what one would expect with two completely in-
dependent data sets.

To quantify the effect of systematic uncertainties when
both other parameters and WMAP data are included,
we carry out a second testing exercise. Using the Fisher-
matrix technique of [129], we compute how our best-fit
parameter values shift in response to a systematic bias
in the theoretically computed power spectrum P (k). To
be conservative, we make the rather extreme assump-
tion that the measurements correspond to the nonlin-
ear power spectrum but that the analysis ignores non-
linear corrections entirely, simply fitting to the linear
power spectrum. Although we view this as a worst-case
scenario, it provides an instructive illustration of how
problems related to nonlinear redshift space distortions
and scale-dependent biasing might scale with kmax, the
largest k-band included.

Our results are shown in Figure 14. The upper panel
shows how the constraints from WMAP alone (on left
side of figure) gradually improve as more SDSS data are
included. The dramatic neutrino improvement seen at
small kmax is due to WMAP alone leaving the neutrino
fraction unconstrained. The other parameters where
SDSS helps the most are seen to be ωm and h, which
can be understood based on our discussion in Section III.
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The SDSS power spectrum we have used does not probe
to scales much smaller than k ∼ 0.2, which is why little
further improvement is seen beyond this value.

The lower panel shows the ratio of the above-
mentioned systematic error to the statistical error for
each parameter. We see that the most sensitive param-
eter is ωm, which justifies our singling it out for special
scrutiny above in Table 7 (where ωm is equivalent to Ωm

since we kept h fixed). Although ns also partially mim-
ics the nonlinear correction and perhaps scale-dependent
bias, it is seen to be somewhat less sensitive. Our Fisher
matrix estimate is seen to be somewhat overly pessimistic
for Ωm, predicting that neglecting nonlinearities shifts
ωm by of order 2σ for kmax = 0.2h/Mpc whereas the
brute force analysis in Table 7 shows the shift to be
only about half as large even when WMAP is ignored.
The sensitivity to h is linked to the Ωm-sensitivity by
the banana in Figure 5. The Ων-sensitivity comes from
the small-scale neutrino P (k)-suppression being similar
to the suppression in going from nonlinear to linear P (k)-
modeling.

In conclusion, as long as errors in the modeling of non-
linear redshift distortions and bias are not larger than
the nonlinear correction itself, we expect our uncertain-
ties with kmax = 0.2h/Mpc to be dominated by statisti-
cal rather than systematic errors. The fact that cutting
back to kmax = 0.15h/Mpc left our results virtually un-
changed (Table 7) supports this optimistic conclusion.
Indeed, Figure 14 shows that with kmax = 0.15h/Mpc,
the reader wanting to perform a simple analysis can even
use the linear P (k) to good approximation.

However, both statistical errors and the systematic er-
rors we have discussed in this section are dwarfed by the
effects of changing theoretical priors. For instance, Ta-
ble 2 shows that Ωm increases by 0.08 when dropping
either the assumption of negligible neutrinos or the as-
sumption of negligible curvature. Moreover, to place this
in perspective, all Bayesian analysis using Monte Carlo
Markov Chains implicitly assumes a uniform prior on
the space of the parameters where the algorithm jumps
around, and different authors make different choices for
these parameters, which can make a substantial differ-
ence.4

4 For instance, we use Ap ≡ Ase−2τ where the WMAP team uses
As [7], and both we and the WMAP team use the CMB peak
location parameter Θs where many other groups use ΩΛ. The
difference between these implicit priors is given by the Jacobian
of the transformation, which describes how the volume element
changes and generically will have variations of order unity when
a parameter varies by a factor of two. For a parameter p that is
tightly constrained with a small relative error |∆p/p| ≪ 1, this
Jacobian becomes irrelevant. For weakly constrained parameters
like τ , however, this can easily shift the best-fit value by 1σ.
For example, changing to a uniform prior on the reionization
redshift zion ∝ τ2/3 as done by [68] corresponds to using a τ -
prior ∝ τ−1/3, which strongly weights the results towards low
τ .

A final source of potential uncertainties involves bugs
and algorithmic errors in the analysis software. To guard
against this, we performed two completely independent
analyses for many of the parameter spaces that we have
tabulated, one using the Monte Carlo Markov Chain
method described in Appendix A (coded up from scratch)
and the second using the publicly available CosmoMC
package [32] with appropriate modifications. We found
excellent agreement between the two sets of results, with
all differences much smaller than the statistical errors
and prior-related uncertainties.

D. What have we learned about physics?

The fact that any simple model fits such accurate and
diverse measurements is impressive evidence that the ba-
sic theoretical framework of modern cosmology is correct,
and that we need to take its implications seriously how-
ever surprising they may be. What are these implica-
tions?

1. Inflation

The two generic predictions of perfect flatness (|Ωk| ∼<

10−5) and near scale-invariance have passed yet another
test with flying colors. We find no evidence for running
tilt. We also find no evidence for gravitational waves, and
are therefore unable to measure the tensor spectral index
and test the inflationary consistency relation r = −8nt.
The most interesting confrontation between theory and
observation is now occurring in the (ns, r) plane (Fig-
ure 10). We confirm the conclusion [5] that most popular
models are still allowed, notably even stochastic eternal
inflation with its prediction (ns, r) ≈ (0.96, 0.16), but
modest data improvements over the next few years could
decimate the list of viable inflationary candidates and
rival models [130].

2. Dark energy

Since its existence is now supported by three indepen-
dent lines of evidence (SN Ia, power spectrum analysis
such as ours, the late ISW effect [131–136]) and its cur-
rent density is well known (the last column off Table 2
gives ΩΛ = 0.70 ± 0.04), the next challenge is clearly
to measure whether its density changes with time. Al-
though our analysis adds improved galaxy and SN Ia data
to that of the WMAP team [6], our conclusions are quali-
tatively the same: all data are consistent with the density
being time-independent as for a simple cosmological con-
stant (w = −1), with uncertainties in w at the 20% level.
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3. Cold and hot dark matter

We measure the density parameter for dark matter to
be ωd = 0.12 ± 0.01 fairly robustly to theoretical as-
sumptions, which corresponds to a physical density of
2.3×10−27kg/m3 ±10%. Given the WMAP information,
SDSS shows that no more than about 12% of this dark
matter can be due to massive neutrinos, giving a 95%
upper limit to the sum of the neutrino masses Mν < 1.7
eV. Barring sterile neutrinos, this means that no neutrino
mass can exceed Mν/3 = 0.6 eV. [6] quotes a tighter
limit by assuming a strong prior on galaxy bias b. We
show that the recent claim of a neutrino mass detection
Mν ∼> 0.6 eV by Allen et al. hinges crucially on a partic-
ular low galaxy cluster σ8 measurement and goes away
completely when expanding the cluster σ8 uncertainty to
reflect the spread in the literature.

4. Reionization and astronomy parameters

We confirm the WMAP team [6] measurement of early
reionization, τ = 0.12+0.08

−0.06. This hinges crucially on
the WMAP polarization data; using only the unpolar-
ized WMAP power spectrum, our analysis prefers τ = 0
and gives an upper limit τ < 0.23 (95%).

Assuming the vanilla model, our Hubble parameter
measurement h ≈ 0.70+0.04

−0.03 agrees well with the HST key
project measurement h = 0.72±0.07 [49]. It is marginally
lower than the WMAP team value h ≈ 0.73 ± 0.03 be-
cause the SDSS power spectrum has a slightly bluer slope
than that of the 2dFGRS, favoring slightly higher Ωm-
values (we obtain Ωm = 0.30 ± 0.04; the WMAP team
quote Ωm = 0.26 ± 0.05 [6]).

E. What have we not learned?

The cosmology community has now established the ex-
istence of dark matter, dark energy and near-scale invari-
ant seed fluctuations. Yet we do not know why they exist
or the physics responsible for generating them. Indeed,
it is striking that standard model physics fails to explain
any of the four ingredients of the cosmic matter budget:
it gives too small CP-violation to explain baryogenesis,
does not produce dark matter particles, does not produce
dark energy at the observed level and fails to explain the
small yet non-zero neutrino masses.

Fortunately, upcoming measurements will provide
much needed guidance for tackling these issues: con-
straining dark matter properties (temperature, viscosity,
interactions, etc.), dark energy properties (density evo-
lution, clustering), neutrino properties (with galaxy and
cmb lensing potentially sensitivity down to the experi-
mental mass limits ∼ 0.05 eV [137–139]) and seed fluc-
tuation properties (model-independent measurements of
their power spectrum [127]).

The Sloan Digital Sky Survey should be able to make
important contributions to many of these questions. Red-
shifts have now been measured for about 350,000 main-
sample galaxies and 35,000 luminous red galaxies, which
will allow substantially tighter constraints on even larger
scales where nonlinearities are less important, as will
analysis of three-dimensional clustering using photomet-
ric redshifts [140] with orders of magnitude more galaxies.
There is also a wealth of cosmological information to be
extracted from analysis of higher moments of galaxy clus-
tering, cluster abundance[141], quasar clustering, small-
scale galaxy clustering[142], Lyα forest clustering, dark
matter halo properties[143], etc., and using information
this to bolster our understanding the gastrophysics of
biasing and nonlinear redshift distortions will greatly re-
duce systematic uncertainties associated with galaxy sur-
veys. In other words, this paper should be viewed not as
the final word on SDSS precision cosmology, merely as a
promising beginning.
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APPENDIX A: COMPUTATIONAL ISSUES

In this Appendix, we briefly summarize the technical
details of how our analysis was carried out.

1. Monte Carlo Markov Chain summary

The Monte Carlo Markov chain (MCMC) method is
a well-established technique [27–29] for constraining pa-
rameters from observed data, especially suited for the
case when the parameter space has a high dimensional-
ity. It was recently introduced to the cosmology commu-
nity by [31] and detailed discussions of its cosmological
applications can be found in [7, 32, 33].

The basic problem is that we have a vector of cosmo-
logical data d from which we wish to measure a vector
of cosmological parameters p. For instance, d might be
the 1367-dimensional vector consisting of the 899 WMAP
measurements of the temperature power spectrum Cℓ for
ℓ = 2, ..., 900, the 449 WMAP cross-polarization mea-
surements and the 19 SDSS P (k)-measurements we use.
The cosmological parameter vector p might contain the
parameters of equation (1) or some subset thereof. The-
ory p is connected to data d by the so-called likelihood
function L(p,d), which gives the probability distribu-
tion for observing different d given a theoretical model
p. In Bayesian analysis, one inserts the actual observed
data and reinterprets L(p,d) as an unnormalized prob-
ability distribution over the cosmological parameters p,
optionally after multiplication by a probability distribu-
tion reflecting prior information. To place constraints
on an single parameter, say p7, one needs to marginalize
(integrate) over all the others.

Two different solutions have been successfully applied
to this problem. One is the grid approach (e.g., [144–
146]), evaluating L(p,d) on a grid in the multidimen-
sional parameter space and then marginalizing. The
drawback of this approach is that the number of grid
points grows exponentially with the number of parame-
ters, which has in practice limited this method to about
10 parameters [22]. The other is the MCMC approach,
where a large set of points pi, i = 1, ...n, a chain, is
generated by a stochastic procedure such that the points
have the probability distribution L(p,d). Marginaliza-
tion now becomes trivial: to read off the constraints on
say the seventh parameter, one simply plots a histogram
of p7.

The basic MCMC algorithm is extremely simple, re-
quiring only about ten lines of computer code.

1. Given pi, generate a new trial point p∗ = pi + ∆p

where the jump ∆p is drawn from a jump proba-
bility distribution f(∆p).

2. Accept the jump (set pi+1 = p∗) or reject
the jump (set pi+1 = pi) according to the
Metropolis-Hastings rule [27, 28]: always accept
jumps to higher likelihoods, i.e., if L(p∗,d) >
L(pi,d), otherwise accept only with probability
L(p∗,d)/L(pi,d).

The algorithm is therefore completely specified by two
entities: the jump function f(∆p) and the likelihood
function L(p∗,d). We describe how we compute f and
L below in sections A 2 and A 3, respectively.

Table 8 lists the chains we used and their basic proper-
ties: dimensionality of the parameter space, parameters
used, data d used in likelihood function, number of steps
n (i.e., the length of the chain), the success rate (fraction
of attempted jumps that were accepted according to the
above-mentioned Metropolis-Hastings rule), the correla-
tion length (explained below) and the effective length.
We typically ran a test chain with about 10000 points to
optimize our choice of jump function f as described in
Section A2, then used this jump function to run about
40 independent chains with different randomly generated
starting points p1. In total, this used about 30 CPU-
years of Linux workstation time. Each chain has a pe-
riod of “burn-in” in the beginning, before it converges to
the allowed region of parameter space: we computed the
median likelihood of all chains combined, then defined
the end of the burn-in for a given chain as the first step
where its likelihood exceeded this value. Most chains
burned in within 100 steps, but a small fraction of them
failed to burn in at all and were discarded, having started
in a remote and unphysical part of parameter space and
become stuck in a local likelihood maximum. After dis-
carding the burn-in, we merged these independent chains
to produce those listed in Table 8. This standard proce-
dure of concatenating independent chains preserves their
Markov character, since they are completely uncorrelated
with one another.

2. The jump function f

As illustrated in Figure 15, consecutive points pi, i =
1, ... of a MCMC are correlated. We quantify this by the
dimensionless autocorrelation function c, shown for the
reionization parameter τ in Figure 16 and defined by

cj ≡
〈τiτi+j〉 − 〈τi〉

2

〈τ2
i 〉 − 〈τi〉2

, (A1)

where averages are over the whole chain. The correlation
is by definition unity at zero lag, and we define the corre-

lation length as the number of steps over which the corre-
lation drops to 0.5. The figure of merit for a chain is its
effective length N , defined as the number of steps divided
by the correlation length. Since N is roughly speaking
the number of independent points, the MCMC technique
measures statistical quantities such as the standard de-
viation σp and the mean 〈p〉 for cosmological parameters
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Table 8: Monte Carlo Markov chains used in the chain. The figure of merit for a chain is the effective length (the actual length divided
by the correlation length). Here we have chosen to tabulate correlation lengths for the τ -parameter, since it is typically the largest
(together with that for ns and ωb, because of the banana degeneracy of Section III A). The success rate is the percentage of steps

accepted. “Vanilla” denotes the six parameters (τ, ωb, ωd,ΩΛ, As, ns). In the data column, T denotes the unpolarized power spectrum, X
denotes the temperature/E-polarization cross power spectrum, and τ denotes the prior τ < 0.3.

Chain Dim. Parameters Data Length Success Corr. length Eff. length

1 9 Vanilla+Ωk + r + α WMAP T+X 189202 22% 218 868

2 7 Vanilla+fν WMAP T+X 133361 8% 78 1710

3 7 Vanilla+w WMAP T+X 352139 3% 135 2608

4 7 Vanilla+Ωk WMAP T+X 101922 7% 213 479

5 7 Vanilla+r WMAP T+X 178670 13% 29 6161

6 6 Vanilla WMAP T+X 311391 16% 45 6920

7 6 Vanilla WMAP T 298001 15% 25 11920

8 5 Vanilla−ns WMAP T+X 298001 29% 7 42572

9 10 Vanilla+Ωk + r + α + b WMAP T+X + SDSS 298001 4% 69 4319

10 8 Vanilla+fν + b WMAP T+X + SDSS 46808 18% 24 1950

11 8 Vanilla+w + b WMAP T+X + SDSS 298002 4% 98 3041

12 8 Vanilla+Ωk + b WMAP T+X + SDSS 298001 6% 83 3590

13 8 Vanilla+r + b WMAP T+X + SDSS 298001 12% 31 9613

14 7 Vanilla+b WMAP T+X + SDSS 298001 16% 18 16556

15 7 Vanilla+b SDSS+WMAP T 298001 16% 17 17529

16 6 Vanilla−ns + b WMAP T+X + SDSS 298001 25% 8 37250

17 6 Vanilla−ns + b WMAP T+X + SDSS +φ2 298001 25% 8 37250

18 8 Vanilla+w + b WMAP T+X + SDSS + SN Ia 298001 12% 25 11920

19 8 Vanilla+r + b WMAP T+X + SDSS + SN Ia 298001 5% 89 3348

20 8 Vanilla+r + b WMAP T+X + SDSS + τ 151045 6% 26 5809

21 8 Vanilla+r + b WMAP T+X + SDSS + SN Ia + τ 68590 6% 30 2286

22 7 Vanilla+b Other CMB + SDSS 315875 30% 24 13161

23 7 Vanilla+b WMAP + other CMB + SDSS 559330 20% 10 55933

24 2 Ωm + As SDSS 48001 41% 6 8000

25 2 Ωm + As SDSS kmax = 0.15 48001 36% 6 8000

26 2 Ωm + As SDSS kmax = 0.10 48001 31% 9 5333

27 2 Ωm + As SDSS no bias corr. 48001 38% 7 6857

28 2 Ωm + As SDSS linear P (k). 48001 50% 5 19600

29 2 Ωm + As 2dFGRS 48001 33% 9 5333
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FIG. 15: The reionization parameter Z as a function of the MCMC
step. This example is for chain 6 from Table 8.

to an accuracy of order σp/N
1/2. Unless N ≫ 1, the

results are useless and misleading, a problem referred to
as insufficient mixing in the MCMC literature [29].

We attempt to minimize the correlation length by tai-
loring the jump function to the structure of the likeli-
hood function. Consider first a toy model with a one-
dimensional parameter space and a Gaussian likelihood

L(p) ∝ e−p2/2 and a Gaussian jump function f(∆p) ∝

e−∆p2/2σ2

. What is the best choice of the characteris-
tic jump size σ? In the limit σ → ∞, all jumps will
fail; p1 = p2 = ..., cj = 1 for all j and the correlation
length becomes infinite. In the opposite limit σ → 0,
almost all steps succeed and we obtain Brownian mo-
tion with the rms value |pi| ∼ σi1/2, so it takes of order
σ−2 → ∞ steps to wander from one half of the distribu-
tion to the other, again giving infinite correlation length.
This implies that there must be an optimal jump size
between these extremes, and numerical experimentation
shows that σ ∼ 1 minimizes the correlation length.

In the multiparameter case, strong degeneracies can
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FIG. 16: The autocorrelation function (solid curve) for the exam-
ple in Figure 15 is seen to be approximately fit by an exponential
(dashed curve), dropping to 50% at a correlation length of 45 steps
as indicated by the dotted lines.

cause a huge correlation length if the jump size is chosen
independently for each parameter, with the chain tak-
ing a very long time to wander from one end of the ba-
nana to the other. A clever choice of parameters that
reduces degeneracies therefore reduces the correlation
length. For this reason, the WMAP team used the pa-
rameters suggested by [26], and we do the same with the
minor improvement of replacing As by Ap as the scalar
normalization parameter as in [24]5. To minimize the
remaining degeneracies, we compute the parameter co-
variance matrix C ≡ 〈ppt〉 − 〈p〉〈p〉t from the chain it-
self, diagonalize it as C = RΛRt, RRt = RtR = I,
Λij = δijλ

2
i , and work with the transformed parame-

ter vector p′ ≡ Λ−1/2Rt[p − 〈p〉] which has the be-
nign properties 〈p′〉 = 0, 〈p′p′t〉 = I. Inspired by the
above-mentioned one-dimensional example, we then use

the simple jump function f(∆p′) ∝ e−|∆p
′|2/2σ2

. We use
σ = 1 for all chains except number 1 in Table 8, where we
obtain a shorter correlation length using σ = 0.7. When
running our test chains to optimize f , we start by guess-
ing a diagonal C and after the burn-in, we update our
estimates of both C and the eigenbasis every 100 steps.
A very similar approach is used in other recent MCMC
codes, e.g., [32, 147].

The WMAP team perform extensive testing to con-
firm that their chains are properly mixed [7], and we
have followed the WMAP team in using the Gelman and

5 When imposing a flatness prior Ωk = 0, we retained Θs as a free
parameter and dropped ΩΛ. When additionally imposing a prior
on h (for the last 6 chains in Table 8), we dropped both Θs and
ΩΛ as free parameters, setting ΩΛ = 1 − (ωd + ωb)/h2.

Rubin R-statistic [30] to verify that our chains are suf-
ficiently converged and mixed. Indeed, we find that the
above-mentioned eigenbasis technique helps further im-
prove the mixing by cutting our correlation length by
about an order of magnitude relative to that obtained
with the WMAP jump function, hence greatly increasing
the effective length of our chains.

3. The likelihood function L

For a detailed discussion of how to compute cosmolog-
ical likelihood functions, see [7, 148]. Our calculation of
L(p,d) does little more than combine public software de-
scribed in other papers, so the details in this brief section
are merely of interest for the reader interested in exactly
reproducing our results.

The total likelihood L is simply a product of likeli-
hoods corresponding to the data sets used, e.g., WMAP,
SDSS and SN Ia. For the CMB, we compute theoret-
ical power spectra using version 4.3 of CMBfast [23],
with both the “RECfast” and “PRECISION” options
turned on. We compute the WMAP likelihood corre-
sponding to these spectra using the public software pro-
vided by the WMAP team [7]. Since this software is
designed for physically reasonable models, not for crazy
models that may occur during our burn-in, we augment
it to produce large negative likelihoods for unphysical
models where it would otherwise give negative χ2-values.
For some of the WMAP+SDSS chains, we evaluate the
WMAP likelihood LWMAP by fitting a quartic polyno-
mial to lnLWMAP from the corresponding WMAP-only
chains. For this fit, we replace ωd by ωm, ωb by H2, ns

by H3 and Ap by A∗ inspired by the normal parame-
ter method of [24]. This approach, described in detail
in [149], is merely a numerical tool for accelerating the
computations, and we verify that it has negligible impact
on our results.

When combining non-WMAP CMB data with WMAP,
we include the latest band-power detections from
Boomerang [150] (madcap), DASI [151], MAXIMA [152],
VSA [153], CBI (mosaic, even binning) [154] and ACBAR
[155] with probing effective multipoles ℓ ≥ 600 (where
they are collectively more sensitive than WMAP) and ℓ ≤
2000 (to avoid complications related to reported small-
scale excess, which may be due to secondary anisotropies
or non-CMB effects), which corresponds to the 9+3+3+
4+6+9 = 34 data points plotted in Figure 17. The pre-
WMAP data has been shown to be consistent both in-
ternally and with WMAP [156]. We marginalize over the
quoted calibration uncertainties of 10% for Boomerang,
4% for MAXIMA and DASI, 5% for CBI, 3.5% for VSA
and 10% for ACBAR as well as over quoted beam uncer-
tainties of 15% for Boomerang, 5% for ACBAR and 14%
for MAXIMA (this last number provides a good fit to the
combined beam and pointing uncertainties for the three
measurements used from Table 1 of [152]). We make the
approximation that all experiments are uncorrelated with
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FIG. 17: CMB data used. Error bars show do not include the
calibration and beam uncertainties that we include as described in
the text. Solid curve corresponds to the “vanilla lite” model of
equation (2).

each other and with WMAP, which should be quite accu-
rate both since sample variance correlations are negligible
(given their small sky coverage relative to WMAP) and
since the wmap errors are dominated by detector noise for
ℓ ≥ 600. When using non-CMB data without WMAP, we
use all 151 pre-WMAP band power measurements com-
piled in [157]. For the non-WMAP data, we computed
the CMB power spectra with the DASh package [158].

For SDSS, we compute the likelihood by fitting b2 times
the nonlinear power spectrum P (k) to the first 19 band
power measurements (for k < kmax ∼ 0.2h/Mpc) using
the window functions and likelihood software provided by
that paper [20]. For more details about the SDSS data,
see [159–166]. We compute the nonlinear P (k) using the
method and software provided by [34]. This software
takes the linear power spectrum P (k) as input, and we
compute it using the fitting software provided by [167] for
the transfer function, the approximation of [39] for the
linear growth factor and the approximation that P (k) is
as a product of these two quantities as per equation (C3)
from [47]. For k ∼

> 0.2, this typically agrees with CMB-
fast 4.3 to better than a few percent. In the absence of
massive neutrinos (fν = 0), the separability approxima-

tion becomes exact and the transfer function fits [167]
become identical to those of Eisenstein & Hu [168].

For SN Ia, we use the 172 redshifts and corrected peak
magnitudes compiled and uniformly analyzed by Tonry et

al. [35] and compute the likelihood with software kindly
provided by John Tonry. This likelihood depends only on
(ΩΛ, Ωk, w), and is marginalized over the corrected SN Ia
“standard candle” absolute magnitude.

4. Confidence limits and likelihood plots

All confidence limits quoted in the tables and text of
this paper are quantiles, as illustrated in Figure 18. For
instance, our statement in Table 3 that Mν < 1.74eV
at 95% confidence simply means that 95% of the Mν-
values in that chain are smaller than 1.74eV. Simi-
larly, the entry ns = 0.972+0.041

−0.027 in the same column
means that the distribution of ns-values has median
0.972, that erfc(2−1/2)/2 ≈ 15.87% of the values lie
below 0.972 − 0.027 and that 15.87% of the values lie
above 0.972 + 0.041, so that 68.27% lie in the range
ns = 0.972+0.041

−0.027. There is thus no assumption about
the distributions being Gaussian. In a handful of cases
involving r, fν and Mν , the distribution (see Figure 2 for
examples) peaks at zero rather than near the median; in
such cases, we simply quote an upper limit.

When plotting 1-dimensional distributions f(p) in Fig-
ure 2, we fit each histogram to a smooth function of the
form f(p) = eP (p) where P (p) is the 6th order polynomial
that maximizes the likelihood

∏n
i=1 f(pi) that the points

p1, ..., pn in the chain are drawn from the distribution
f(p), subject to the constraint that

∫

f(p)dp = 1. We
found that these smooth curves visually match the raw
histograms extremely well (see Figure 18 for a rather non-
Gaussian example) and have the advantage of avoiding
both the Poisson jaggedness and the excessive smoothing
inherent in a histogram.

Our 2-dimensional contours are plotted where the

point density has dropped by e−∆χ2/2 from its maximum,
where ∆χ2 = 6.18 as recommended in §15.6 of [169].
These contours would enclose 95% of the points if the
distribution were Gaussian. When computing the point
density, there is tradeoff between insufficient smoothing
(giving contours dominated by Poisson noise) and exces-
sive smoothing (which artificially broadens the contours,
particularly in the narrow direction of a degeneracy ba-
nana). We found that this was alleviated by computing
the contours in the linearly transformed 2-dimensional
space defined in Section A 2 where the covariance matrix
is the identity matrix.
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